# NI 43-101 Technical Report Assessing the Au, Cu, Porphyry Potential of the

# **New Enterprise Project**

Maynard Mining District, Kingman, Arizona, United States of America

#### **FOR**

Pershing Resources Company Inc. 200 South Virginia Street, 8<sup>th</sup> Floor Reno, NV 89501

#### **AUTHORS:**

Edward Walker, Ph.D., P.Geo.

Jim Renaud, Ph.D., P.Geo.

Natalie Pietrzak-Renaud, Ph.D., P.Geo.

Effective Date : June 18, 2018 Signature Date: May 22, 2018



# **Table of Contents**

| Item 1: | Summary                                                                                                                                               | 7  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Item 2: | Introduction                                                                                                                                          | 12 |
| Item 3: | Reliance on Other Experts                                                                                                                             | 14 |
| Item 4: | Property Description and Location                                                                                                                     | 14 |
| Item 5: | Accessibility, Climate, Local Resources, Infrastructure, and Physiography                                                                             |    |
|         | Location and Access                                                                                                                                   | 27 |
|         | Climate and Vegetation                                                                                                                                | 27 |
|         | Local Resources and Infrastructure                                                                                                                    | 27 |
|         | Physiography                                                                                                                                          | 27 |
| Item 6: | History                                                                                                                                               | 28 |
|         | New Enterprise Project Area and Relevant History                                                                                                      | 29 |
|         | Prior to 1909 Enterprise Mine (From Schrader, 1909)                                                                                                   |    |
|         | 1949 to 1951 Detailed Descriptions of Chloride and Mineral Park Mining Districts                                                                      |    |
|         | 1952 to 2000 Longstanding Continuous Claim Blocks - Mohave Standard Mining Claims                                                                     |    |
|         | 1959 Geological Map of Mohave County                                                                                                                  |    |
|         | 1974 to 1990 Mr. Gilbert Whitsett, Enterprise Mining Claims                                                                                           |    |
|         | 1974 MSc Research by Vuich, J.S., Mineral Evaluation of the Wheeler Wash                                                                              |    |
|         | 1981 PhD Research by Wilkinson, W.H., Mineral Park Mine                                                                                               |    |
|         | 1992 to 2000 Claim Block Holders - New Enterprise Mining Claims since Mr. Gilbert Whits 2004 to 2014 Simple Recovery Inc., New Enterprise Claim Block |    |
|         | 2013 to 2016 A&M Minerals Inc., – Mohave Standard Exploration, Drilling Program                                                                       |    |
|         | 2015 to 2016 Additional Programs                                                                                                                      |    |
|         | 2005 to Present Bell Copper Corporation, Kabba Project                                                                                                |    |
|         | 2015 to Present Pershing Resources Company Inc., New Enterprise Project                                                                               |    |
| Item 7: | Geological Setting and Mineralization                                                                                                                 | 35 |
|         | Regional Geology                                                                                                                                      |    |
|         | Property Geology                                                                                                                                      |    |
|         | Precambrian Rocks                                                                                                                                     |    |
|         | Laramide Intrusive Rocks                                                                                                                              |    |
|         | Structure                                                                                                                                             |    |
|         | Alteration                                                                                                                                            | 41 |
|         | Mineralization                                                                                                                                        | 41 |
|         | Porphyry Gold-Copper and Early Quartz Veining Occurrences                                                                                             | 42 |
|         | Late Fracture and/or Fault Controlled Quartz Veining                                                                                                  | 45 |
|         | Mineralized Vein Systems                                                                                                                              | 51 |
|         | Porphyry Copper-Molybdenum Occurrences                                                                                                                | 57 |
| Item 8: | Deposit Types                                                                                                                                         | 58 |
|         | Laramide Copper-Molybdenum Porphyry                                                                                                                   | 58 |
|         | Veining Associated with the Porphyry Cu-Mo Model                                                                                                      | 59 |
|         | Gold-rich Porphyry Deposits                                                                                                                           | 60 |
| Item 9: | Exploration                                                                                                                                           | 61 |
|         | Mineralized Rock Types within the Vein Systems                                                                                                        |    |
|         | New Enterprise Mining Claim Group Vein Systems                                                                                                        |    |
|         | Central Vein System                                                                                                                                   |    |



|             | West Vein SystemEast Vein System                                |     |
|-------------|-----------------------------------------------------------------|-----|
|             | Multi-element Discrimination Plots                              |     |
| Item 10: Di | filling                                                         | 77  |
| Item 11: Sa | imple Preparation, Analyses, and Security                       | 83  |
|             | 2013 and 2014 A&M Minerals Grab Samples                         |     |
|             | 2013 A&M Minerals Drill Core Samples                            | 83  |
|             | 2013 Bridge Metal Processing LLC. Grab Samples, Bain, D.J       |     |
|             | 2016 and 2017 Pershing Resources Grab Samples                   |     |
|             | 2018 Grab Samples                                               |     |
|             | Pulp Duplicate Results                                          |     |
| Item 12: Da | ata Verification                                                |     |
|             | A&M Minerals Drill Core                                         | 90  |
| Item 13: M  | ineral Processing and Metallurgical Testing                     | 91  |
| Item 14: M  | ineral Resource Estimates                                       | 94  |
| Item 15: M  | ineral Reserve Estimates                                        | 94  |
| Item 16: M  | ining Methods                                                   | 94  |
| Item 17: Re | ecovery Methods                                                 | 94  |
| Item 18: Pr | oject Infrastructure                                            | 94  |
| Item 19: M  | arket Studies and Contracts                                     | 94  |
| Item 20: Er | vironmental Studies, Permitting, and Social or Community Impact | 94  |
| Item 21: Ca | pital and Operating Costs                                       | 94  |
| Item 22: Ed | onomic Analysis                                                 | 95  |
| Item 23: Ad | djacent Properties                                              | 95  |
|             | Century Mine                                                    | 95  |
|             | Standard Mine (formerly known as the Telluride Chief)           |     |
|             | Bell Copper Corporation, Kabba Project                          | 96  |
| Item 24: O  | ther Relevant Data and Information                              | 96  |
| Item 25: In | terpretations and Conclusions                                   | 97  |
| Item 26: Re | ecommendations                                                  | 99  |
| Item 27: Re | eferences                                                       | 100 |
| Item 28: St | atement of Qualified Persons                                    | 104 |
| Item 29: Ap | ppendix                                                         |     |
|             | Appendix 1: 2018 Sample Locations and Descriptions              |     |
|             | Appendix 2: 2018 Assay Certificates                             |     |
|             | Appendix 3: 2017 Assay Certificates                             |     |
|             | Appendix 4: 2016 Sample Locations and Descriptions              | 115 |



|            |            | x 5: 2016 Assay Certificates                                       |     |
|------------|------------|--------------------------------------------------------------------|-----|
|            | Appendi    | x 6: 2017 AuRic Metallurgical Laboratories Analysis Report         | 117 |
| List of Ta | ables      |                                                                    |     |
|            | Table 1.   | Summary List of Utilized Abbreviations                             | 13  |
|            | Table 2.   | List of New Enterprise Group of Mining Claims                      | 19  |
|            | Table 3.   | List of Mohave Standard Group of Mining Claims                     | 23  |
|            | Table 4.   | List of Key Mineral Occurrences                                    | 42  |
|            | Table 5.   | Summary Table of Late Quartz Vein Analysis                         | 68  |
|            | Table 6.   | Summary Table of Early Quartz Vein Analyses                        | 69  |
|            | Table 7.   | Summary Table of Vein System Porphyry Analysis                     | 70  |
|            | Table 8.   | Summary Table of Vein System Host Rock Analyses                    | 71  |
|            | Table 9.   | A&M Minerals HQ Drill Holes                                        | 79  |
|            | Table 10.  | Assays of Samples Submitted for Leaching Tests                     | 93  |
| List of Fi | igures     |                                                                    |     |
|            | Figure 1.  | Location                                                           | 16  |
|            | Figure 2.  | Regional Location                                                  | 17  |
|            | Figure 3.  | Location of Property (Google Earth Pro Image)                      | 18  |
|            | Figure 4.  |                                                                    | 26  |
|            | Figure 5.  | Simplified Outline of Mining Claim Groups                          | 26  |
|            | Figure 6.  | Simplified Regional Geology of Cerbat and Hualapai Mountain Ranges | 35  |
|            | Figure 7.  | Property Geology Map                                               | 37  |
|            | Figure 8.  | Key Mineral Occurrences in the New Enterprise Project Area         | 43  |
|            | Figure 9.  | Mineral Occurrences: Grab Samples >0.10 ppm Gold                   | 52  |
|            | Figure 10. | Mineral Occurrences: Grab Samples >1,000 ppm Copper                | 53  |
|            | Figure 11. | Mineral Occurrences: Grab Samples >30 ppm Silver                   | 54  |
|            | Figure 12. | Mineral Occurrences: Grab Samples >2,000 ppm Lead                  | 55  |
|            | Figure 13. | Mineral Occurrences: Grab Samples >1,000 ppm Zinc                  | 56  |
|            | Figure 14. | Southwest Porphyry Province                                        | 59  |
|            | Figure 15. | Grab Sample Location Map – New Enterprise Claim Group              | 63  |
|            | Figure 16. | Gold versus Copper and Lead                                        | 65  |
|            | Figure 17. | Gold versus Silver and Zinc                                        | 65  |
|            | Figure 18. | Gold versus Tellurium and Bismuth                                  | 66  |
|            | Figure 19. | Gold versus Manganese and Molybdenum                               | 66  |
|            | Figure 20. | Copper versus Lead and Silver                                      | 66  |



| Figure 21.        | Coppe  | er versus Zinc and Manganese                                             | .67 |
|-------------------|--------|--------------------------------------------------------------------------|-----|
| Figure 22.        | Coppe  | er versus Molybdenum and Lead versus Zinc                                | .67 |
| Figure 23.        | Gold   | and Silver versus Lead / Zinc                                            | .67 |
| Figure 24.        | Lead   | and Zinc versus Gold / Copper                                            | .68 |
| Figure 25.        | Silver | versus Gold / Copper                                                     | .68 |
| Figure 26.        | AFM (  | Na2O + K2O–FeOt–MgO) Discrimination Diagram                              | .74 |
| Figure 27.        | High I | Field Strength Elements versus Yttrium                                   | .75 |
| Figure 28.        | Yttriu | m versus Manganese Oxide                                                 | .76 |
| Figure 29.        | Altera | ition Plot                                                               | .77 |
| Figure 30.        | A&M    | Minerals Drill Hole Locations for DDH-01, DDH-02, and DDH-03             | .78 |
| Figure 31.        | A&M    | Minerals 2013 DDH-01                                                     | .80 |
| Figure 32.        | A&M    | Minerals 2013 DDH-02                                                     | .81 |
| Figure 33.        | A&M    | Minerals Blank Sample Copper Values                                      | .85 |
| Figure 34.        | A&M    | Minerals Blank Sample Molybdenum Values                                  | .85 |
| Figure 35.        | A&M    | Minerals Standard Reference Material Molybdenum versus Copper            | .86 |
| Figure 36.        | Pulp [ | Duplicates for Gold and Silver                                           | .89 |
| Figure 37.        | Pulp [ | Duplicates for Copper and Zinc                                           | .89 |
| Figure 38.        | Pulp [ | Duplicates for Molybdenum and Arsenic                                    | .89 |
| Figure 39.        | Pulp [ | Duplicates for Bismuth and Tellurium                                     | .90 |
| Figure 40.        | Pulp [ | Duplicates for Manganese                                                 | .90 |
| List of Photograp | hc     |                                                                          |     |
| Photograp         |        | Photo of Late Quartz Vein cutting and brecciating Quartz Pegmatite       | .38 |
| Photograp         |        | Laramide Quartz Monzonite cut by pyrite-bearing quartz veins             |     |
| Photograp         |        | Laramide Porphyry – Jewell Tunnel, New Enterprise Claim Group            | .40 |
| Photograp         | h 4.   | Gold and Copper Mineralized Porphyry adjacent to Late Quartz Vein        | .44 |
| Photograp         | h 5.   | Gold Associated with Early Quartz Veins and Intensely Altered Porphyry . | .44 |
| Photograp         | h 6.   | Intensely Altered Porphyry Associated with Early Quartz Veins            | .45 |
| Photograp         | h 7.   | Central Vein System – Far North: Late Quartz Vein                        | .46 |
| Photograp         | h 8.   | South Cut vein margin                                                    | .47 |
| Photograp         | h 9.   | West Vein – vesicular margin and comb quartz core (high Au)              | .47 |
| Photograp         | h 10.  | Late Quartz Vein: Brecciation of Quartz and Quartz Matrix                | .48 |
| Photograp         | h 11.  | Laminar Quartz Veins – Jewell Tunnel Air Vent                            | .49 |
| Photograp         | h 12.  | Comb Quartz and Laminar Quartz Veins: Jewell Tunnel                      | .50 |
| Photograp         | h 13.  | Mohave Standard Property Porphyry Copper-Molybdenum                      | .57 |



| Photograph 14. | Rock Examination within the Jewell Tunnel                        | 61 |
|----------------|------------------------------------------------------------------|----|
| Photograph 15. | Examination of Drill Core at Pershing Resources Field Facilities | 82 |
| Photograph 16. | Photo of Pershing Resources' Mobile Processing Facility          | 92 |
| Photograph 17. | Sample Buckets of Enterprise Mine dump pile ready for crushing   | 92 |



## Item 1: Summary

Pershing Resources Company, Inc., ("Pershing Resources") is a publically traded (OTC PINK: PSGR) Nevada based mineral exploration company focused on the acquisition, exploration and development of mineral resources, primarily gold and base metals. Recently, its major focus has been the New Enterprise Project which is the subject of this technical report.

#### **Property Description and Location**

The New Enterprise Project is located in northwestern Arizona, 13 miles southeast of Kingman, Arizona. The mining claims are 100% owned by Pershing Resources Ltd. and consist of the New Enterprise and Mohave Standard mining claim groups. All previously staked mining claims are in good standing with the Bureau of Land Management (BLM) and the annual maintenance fees are up-to-date. A number of claims have been recently added and filed by Pershing Resources, with the remainder pending.

The Project area is located within the NW-SE trending Hualapai Mountains approximately 1,540 meters above sea level. Topographically it is characterized by numerous valleys and steep hills with an elevation difference of approximately 100 meters. Historical mining reports suggest the water table typically to be within approximately 30 meters below surface.

#### Accessibility, Climate, Local Resources, Infrastructure, Location and Access

The New Enterprise Project can be readily accessed by taking US Interstate Highway 40, 16 miles east of Kingman, Arizona, to Exit 66 and then 2.5 miles along Blake Ranch Rd. At this point, a number of 4-wheel drive vehicle accessible roads are available along the entire north and eastern boundaries of the Project. In addition, a network of all-terrain vehicle trails enable sufficient access for early exploration work to the entire Project area.

The climate of the region is arid, with hot summers and mild winters. Most of the mountains as well as the valleys are free of snow during winter, and the highest mountains become free of it in early summer. The vegetation is of the semi-arid desert type and is confined mostly to the valleys, mesas, and lower slopes of the mountains. It consists mainly of cacti, greasewood, yuccas, soapweed, sage, and cat-tails.

#### History

In 1871, high-grade silver, lead, and zinc is reported to have been discovered east of Kingman, on the east slope of the Hualapai Mountain Range, within the Maynard Mining District. During the early 1900's through to the 1950's, small "artisanal" mining activities were undertaken at the Enterprise, Century, and Standard Mines, as well as a number of other smaller unnamed and undocumented locations that are still evident today. From the initial discoveries up to the 1960's, exploration and mining targeted the high-grade precious and base metal veins with interest and activity fluctuating with metal prices. In the 1960's, the discovery of low-grade copper-molybdenum porphyry mineralization within the Mineral Park mining district entirely changed the exploration focus to bulk tonnage, low-grade porphyry copper-molybdenum deposits. Between the 1960's and 1980's, exploration and mining companies acquired ground within and adjacent to the New Enterprise Project looking for large, at or near surface, low-grade porphyry-style mineral deposits. Based on incomplete recording and documentation of their work, most of this exploration appears to overlap, and extend to the south and southwest, on the Mohave Standard mining claims. None of this exploration work appears to have occurred within the New Enterprise mining claims. While the larger exploration and mining companies were searching for the low-grade porphyry Cu-Mo deposits, "artisanal" mining interest continued at the Enterprise, Century



and Standard Mines, mostly trying to unlock potential value from mine dump piles left behind at these mine sites.

#### **Geology Setting and Mineralization**

The New Enterprise Project is situated in the Basin and Range Province of the Paleocene-aged, Laramide orogenic Hualapai Mountain range. Aside from the thrusting folding and basement uplift tectonic events, the Hualapai district experienced calc-alkaline metaluminous magmatism that is historically linked as the events behind the porphyry copper-molybdenum mineralization.

The property bedrock geology is mostly underlain by Precambrian-age rocks with a minor, but significant amount of younger Laramide intermediate intrusive rocks in the south and southeast portions of the property. Historic mine workings and surface trenching directly targeting vein-hosted gold, silver, copper, lead, zinc and molybdenum mineralization are evident throughout the New Enterprise and Mohave Standard mining claims. The high-grade mineralization mostly occurs in north trending, near vertical, quartz veins that transect almost the entire property. Previously referred to as polymetallic veins, the quartz veins are actually hosted within a complex conjugate system that is better described as a vein system. The vein systems can be up to 10 metres wide and can be traced continuously in intermittent bedrock outcroppings for more than 2 kilometres. The vein system includes multiple intermediate to felsic porphyry intrusions, quartz veining, and are directly related to the generation of low to high intensity potassic, sericite, chlorite, and propylitic alteration. Porphyry-style coppermolybdenum mineralization has been drill tested to be present in the Mohave Standard mining claims south and northeast of the Standard Mine.

#### **Exploration**

Exploration is at the early stages in the application of modern mineral exploration techniques. With the absence of a property scale geology map or comprehensive surface sampling, an early reconnaissance bedrock observation and grab sampling program was designed and implemented as part of the preparation and completion of this technical report. The reconnaissance program noted and compiled bedrock types and sample locations using a global positioning system. A total of 106 grab samples were collected spanning the mineral occurrences and variations of mineralization within each of the known areas of precious and base metal mineralization.

Analysis and interpretation of the reconnaissance data suggests the New Enterprise mining claim group can be generally characterized as having three north-south trending vein systems described here in terms of the Central (includes Enterprise Mine and Jewell tunnel), West and East Vein Systems. Significant gold, silver, copper, lead, and zinc analyses were reported for the Central and West Vein Systems. There is an apparent lack of metal or metal ratio zonation, as typically observed outward from porphyry copper-molybdenum deposits. It appears based on the timing relationships and analytical data that each of the vein systems include multiple events that spans an entire sequence of early relatively higher temperature to later relatively lower temperature mineralization. Such a relationship could suggest a "telescoped" sequence of mineralization within each of the vein systems situated directly over the primary heat source from which the mineralization originated.

Rock types within the vein systems can be generally divided into Porphyry (weak to intensely altered), Early Quartz Veins, and Late Quartz Veins. There is a compositional, textural, and timing range that was not fully characterized during the recent fieldwork but can be generally highlighted as porphyry intrusion, alteration, early quartz veining, fault/fracturing, late quartz veining. Precious and base metal



mineralization began with the alteration of the porphyries and continued through to the last stages of vein system development with the formation of the high-grade Late Quartz Veins.

#### **Deposit Type**

Exploration and mining work within the New Enterprise Project area has been caught between two deposit types; bulk tonnage, low grade porphyry copper-molybdenum deposit type models and relatively small high-grade precious and base metal vein deposit type models. Examples of both deposit types are present within the Project area, however, insufficient exploration work has been completed to fully assess the relationship between these two deposit types or which is the primary deposit type to target for exploration.

Since the development of the classic porphyry-copper deposit model in the 1950's and 1960's, a more recent deposit model type has developed that is generally referred to as a gold-rich porphyry copper deposit type. These deposits tend to vary from the classic porphyry copper as not being concentrically zoned and their associated host rocks having more control over the distribution and grades of the mineralization. An integrated gold-rich porphyry copper deposit type should be considered as an exploration guide to test the economic evaluation of the mineralization within the New Enterprise Project.

#### Drilling

Based on the available documents and completed fieldwork, there is no indication that any drilling has been completed within the New Enterprise mining claims. A limited number of drill holes have been completed within the Mohave Standard mining claims. Most recently, three drill holes totaling 1,157 metres (3,796 feet) were completed by A&M Minerals in 2013. Low-grade copper and molybdenum was intersected in each of the drill holes, one located south and the other two northeast, of the Standard Mine. The most significant zone was intersected in DDH-02 with an average of 0.07% copper and 0.03% molybdenum along 187.5 metres of core length. The true widths of these intersections were not calculated. Additional drilling of up to 15 drill holes may have also been completed by Bear Creek Explorations in 1960's but no report is available of this work.

It appears that the drill hole locations targeted by A&M Minerals were based on anomalous copper and molybdenum grab sample values obtained from surface bedrock exposures. Geophysics, geological mapping or systematic geochemical surveys appear not to have been completed or used to delineate the drill hole targets.

#### Sample Preparation, Analysis, and Security

All sample results used in the compilation and interpretation to fulfill the objectives of this technical report are considered by the authors to have been securely handled and the results based on acceptable standard best industry practices for precious and base metal analytical procedures and methods. Limited quality control sampling suggests the results to be reliable within their intended purposes.

#### **Data Verification**

The primary objective of the technical report was to verify the presence of porphyry-style mineralization within primarily the New Enterprise mining claims, and determine whether the known mineral occurrences were related to porphyry gold-copper-molybdenum mineralization. Based on the results as presented and discussed within this Technical Report, both objectives were verified.



#### **Mineral Processing**

As part of the 2017 exploration program, Pershing Resources management collected two random grab samples of Enterprise mine dump material and submitted them for gold and silver leachability tests to AuRIC Metallurgical Laboratories, Salt Lake City, Utah. Scoping tests using sodium cyanide and ammonium thiosulfate at standard concentrations, temperatures, leaching times, and pH levels reported gold and silver recovery in sodium cyanide and ammonium thiosulfate ranges from 87.5 to 91.7 percent. These results confirm that gold and silver can be readily extracted by standard leaching methods and conditions from the Enterprise mine dump pile. It was also noted that reported mercury values of 5.9 ppm may pose a potential processing problem as a deleterious element.

#### **Mineral Resource Estimate**

As of the signing date of this technical report, a mineral resource estimate has not been completed for the New Enterprise Project. Nor are any of the known mineral occurrences sufficiently drill tested to calculate a mineral resource as outlined by the Canadian Institute of Mining and Metallurgy definitions for a mineral resource.

#### **Adjacent Properties**

Adjacent properties to the New Enterprise Project include the Century Mine, Standard Mine and the Kabba Project of Bell Copper Corporation. The Century and Standard Mine properties are each a single mining claim surrounded by the New Enterprise Project. No significant work has recently, or currently being reported or undertaken on either of these mining claims. On the other hand, the Kabba Project has had a significant amount of previous and ongoing exploration work. A total of 17 diamond drill holes and plans to continue drilling in 2018 has been reported by Bell Copper Corporation on its 100% owned Kabba Project. The results to-date recently reported by Bell Copper (Bell Copper press release dated March 16, 2018) are considered by their management to have "outlined a buried top of a major Laramide porphyry copper-molybdenum system."

#### **Interpretations and Conclusions**

Systematic modern exploration techniques have not been fully utilized to assess the economic potential of the New Enterprise Project. Porphyry copper-molybdenum mineralization and significant precious and base metal veins are present within the Project area. The vein-related mineralization does not appear to have been previously examined for its association with a gold-rich porphyry-style deposit type. Nor has the vein associated porphyry-style alteration been considered as indicative of a potentially underlying gold-rich porphyry situated below the surface bedrock within the New Enterprise or Mohave Standard mining claims. Such a correlation would suggest that the host rocks to the veins maybe acting as a "roof" to a gold-rich porphyry system. As a result, distribution and grade zonation of the vein systems will have been controlled by the "roof" rocks. In addition, the "roof" could have also trapped metal-bearing mineralization along its base, creating the potential for "untested" zones of precious and base metal mineralization in closer association with the underlying porphyry. At this time, it is not possible to estimate the depth at which this will have occurred. Geophysical surveying (air and ground), geological mapping, and geochemistry will be integral to the evaluation of the Project area and the identification and prioritization of drill hole targets. Based on the work completed and not completed to-date, the authors consider the potential for a mineral resource to be excellent and highly recommend further exploration.



#### Recommendations

To further test the economic potential of the New Enterprise Project, a two Phase exploration program with a cost estimate of \$1 million is recommended. Phase 1 includes a geophysical program of airborne magnetic surveying and ground Induced Polarization surveying, geological mapping, and sampling analysis programs. Phase 2 includes 1,000 metres of diamond drilling targeting the locations identified during Phase 1. Phase 1 must be completed before beginning Phase 2. Completion of this work may, or may not, substantiate the conclusions or improve the economic evaluation of the New Enterprise Project, however it is strongly recommended.



#### Item 2: Introduction

The authors were requested by Pershing Resources Company Ltd. ("Pershing Resources") to prepare a technical report for their New Enterprise Project, which includes the New Enterprise and Mohave Standard mining claim groups, written to fulfill the reporting and disclosure requirements for mineral projects set out in the National Instrument 43-101 ("NI 43-101"). The NI 43-101 technical reporting requirements used by the Canadian Securities Administrators have been recognized by securities exchange regulators for publically traded securities around the world as a standard for mineral exploration and mining companies. It is understood by the authors that, even though the report is prepared in accordance with the NI 43-101 requirements and qualifying statements, at this time, the report will not be submitted or reviewed by any Canadian Securities Administrators. This means that although the report has been written with the intent to fulfill the rules and policies for technical disclosure, the report has not been reviewed or accepted as compliant by any Canadian securities regulators to demonstrate fulfillment with NI 43-101 reporting and disclosure requirements.

This technical report addresses specifically the economic potential of Pershing Resources' New Enterprise and Mohave Standard mining claims located 10 miles (16 km) southeast of Kingman, Arizona, USA. Interpretations and conclusions were based on the compilation of available public domain reports, data and reports provided by Pershing Resources, interviews and discussions with previous and current Pershing Resources workers, Bureau of Land Management Kingman, Arizona office and website information, and data and observations obtained by the authors during their field visit and collection and chemical analysis of 106 samples. A list of documents used to prepare this technical report is provided in Item 27 References and sited within the technical report when utilized. All laboratory assay certificates related to the 106 samples as well as the 2016 and 2017 grab samples previously collected by Pershing Resources have been included in the Appendix.

The economic potential of the New Enterprise and Mohave Standard mining claims was determined by assessing the extent and effectiveness to which previous exploration had utilized deposit model types to evaluate, and then test, the mineral potential of the properties. Owing to the lack of incentivized filing of mineral exploration work with the Bureau of Land Management for claim maintenance within the Maynard Mining District, overall, the documentation was fragmented and incomplete. Extra effort was undertaken during the preparation of this technical report to ensure that a comprehensive as possible chronology was outlined.

In conjunction with the preparation and completion of the technical report to fulfill NI 43-101 disclosure and reporting requirements, a two week field program and the collection and analysis of 106 grab samples of surface bedrock, underground accessible bedrock, and mine workings stockpiled on the surface were completed. A twelve day on-site visit examination of the New Enterprise Project was completed by the authors Dr. Jim Renaud and Dr. Edward Walker between January 21<sup>st</sup> and February 2<sup>nd</sup>, 2018. The authors worked jointly in the acquisition of previous work, field data, sampling, interpretation and the preparation of each of the chapters.

This report supersedes the most recent technical report, Bain, D.J., 2016, reissued to Pershing Resources after its original completion by Bain, D.J., in 2013 for Bridge Metals Processing LLC. The Bain, 2013 and 2016 reports only include the original eight mining claims over the Enterprise Mine area. Based on the 2013 report, Bain, D.J., confirmed the presence of mineralization at the Enterprise Mine and highlighted the lack of evidence for the presence of porphyry-style deposit type mineralization.



During preparations and execution of this technical report and field sampling program, and completion of the report, Pershing Resources staff and consultants were very open and cooperative in providing assistance to complete the required work, forwarding data, and discussions. The authors would like to acknowledge their openness and commitment to ensure fulfillment of full disclosure and commitment to the completion of the work used to determine the economic potential of the New Enterprise Project.

Outlined in Table 1 is a list of abbreviations that used within this technical report.

Table 1. Summary List of Utilized Abbreviations

| Abbreviation and Unit | Definition                    |
|-----------------------|-------------------------------|
| %                     | percent                       |
| Au                    | Gold                          |
| Ag                    | Silver                        |
| As                    | Arsenic                       |
| ATV                   | All Terrain Vehicle           |
| Bi                    | Bismuth                       |
| BLM                   | Bureau of Land Management     |
| Cu                    | Copper                        |
| Е                     | East                          |
| g/t                   | Grams per tonne               |
| GPS                   | Global Positioning System     |
| HFSE                  | High Field Strength Elements  |
| ICP                   | Inductively Coupled Plasma    |
| Km                    | kilometres                    |
| OES                   | Optical Emission Spectrometry |
| m                     | metre                         |
| mm                    | millimeter                    |
| MS                    | Mass Spectrometry             |
| Mo                    | Molybdenum                    |
| N                     | North                         |
| Pb                    | Lead                          |
| ppm                   | Parts Per Million             |
| ppb                   | Parts Per Billion             |
| Te                    | Tellurium                     |
| S                     | South                         |
| UG                    | Underground                   |
| UTM                   | Universal Transverse Mercator |
| W                     | West                          |
| WGS                   | World Geodetic System         |
| Υ                     | Yttrium                       |
| Zn                    | Zinc                          |



## Item 3: Reliance on Other Experts

The authors relied upon Pershing Resources and its corporate counsel for information regarding the current status of legal title of the New Enterprise Project, property agreements, corporate structure, tax matters, political issues, and any outstanding environmental orders.

When information, technical data, analysis, interpretations and conclusions were used from other sources, whether or not the source was authored by a Qualified Person, these sources are referenced in the text and a detailed description of these sources are compiled as a list in Item 27: References.

# Item 4: Property Description and Location

#### 4.1 Location

The New Enterprise Project is located within the Maynard Mining District, Mohave County, Arizona. The area can be easily accessed by Interstate Highway 40, 104 miles southeast of Las Vegas, Nevada and 195 miles northwest of Phoenix, Arizona. The centre of New Enterprise mining claim group is approximately 243,500 UTM E and 3,889,000 UTM N, and the Mohave Standard mining claim group is approximately 244,500 UTM E and 3,889,000 N, using datum WGS84, Zone 12S. Figure 1 and Figure 2 illustrates the location of the project in relationship to significant geographic landmarks. Figure 3 demonstrates the close proximity to the Mineral Park deposit (20 miles to the northwest) and the Bagdad Mine (45 miles to the southeast).

The New Enterprise Project consists of two groups of contiguous unpatented mining claims, the New Enterprise mining claim group which consists of 141 contiguous unpatented mining claims totalling 2,913 acres (Table 2) and the Mohave Standard mining claim group which consists of 90 contiguous unpatented mining claims totalling 1,859 acres (Table 3). Combined, the two claim groups total 231 contiguous unpatented mining claims covering 4,772 acres equalling 7.46 square miles. Figure 4 illustrates the outlines the individual claims that makeup both mining claim groups. The recorded claims are valid with the Bureau of Land Management until September 1, 2018. The pending claims will likely have the same due date. Payment as illustrated for each individual claim is to be filed with BLM by September 1, 2018 to maintain the claims for an additional year. At the current size of recorded and pending mining claims, a total of US\$35,805.00 will needed to keep the claims in good standing with the Bureau of Land Management

#### 4.2 Land Tenure / Disposition

Pershing Resources Company Inc. purchased 100% ownership of the original New Enterprise eight claim block from Simple Recovery Inc. on May 15, 2015. Records of claim ownership at the Bureau of Land Management were transferred from Simple Recovery Inc. to Pershing Resources Company Inc. in August 2015.

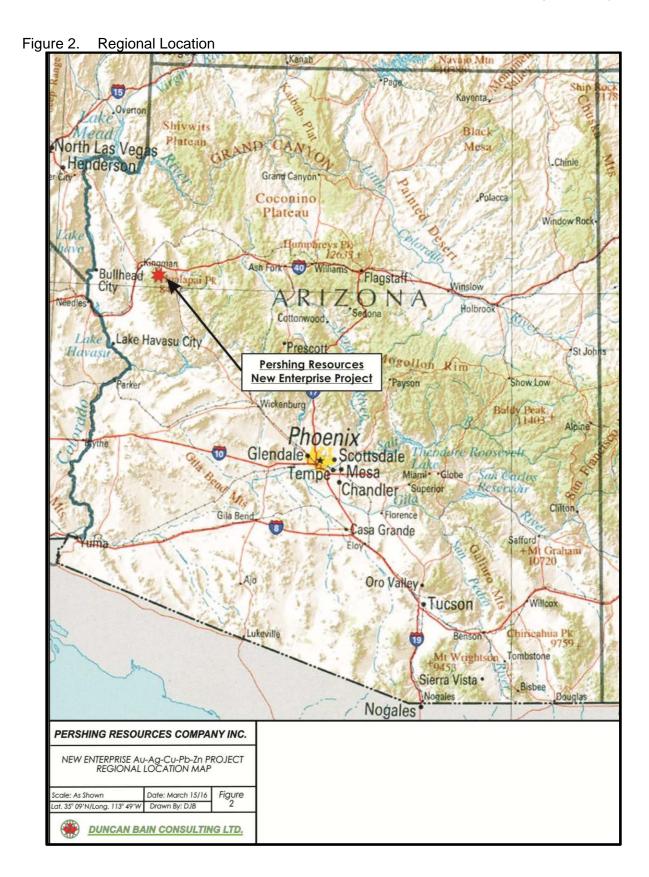
#### 4.3 Description of Claims

The United States Department of the Interior, Bureau of Land Management, references the claims according to their meridian, township, range and section as illustrated in the far right column of Tables 2 and 3. For example, EN 01 is located within meridian 14, township 20N, range 15W and section 1. The sections are further divided into quadrants based on direction, for example, northeast, northwest, southeast and southwest quadrants. Access to the claim records can be found at



http://glorecords.blm.gov/search. The claims and their relationship to township, range and section are illustrated in Figure 5. A simplified outline of the New Enterprise and Mohave Standard claim groups is presented overlain on a Google Earth Pro satellite image of the area.

The authors have not been made aware of any no licences of occupation, royalties or other encumbrances relating to the New Enterprise Project.


It is important to note that the New Enterprise Project does not include the mining claims directly over the Century Mine and Standard Mine. These areas are marked as exclusion areas in Figure 5.

Cattle grazing rights are available to local ranchers throughout much of the New Enterprise Project. This requires the opening and closing of gates when crossing different properties and consultation with the ranchers as exploration advances.













#### Figure 3. Location of Property (Google Earth Pro Image)

#### 4.4 Permits

Based on the recommended work outlined in Item 26: Recommendations, a drill permit will need to be obtained from the Bureau of Land Management in Kingman, Arizona. The permit will require the location of drill pad setups and remediation plans. As such, much of the recommended Phase 1 work will need to be completed so as to determine drill hole locations before the permit can be completed and submitted.

#### 4.5 Environmental Liabilities, Risks, and Reviews

During the site visit it was observed and noted that although the larger more significant historic mine workings have been effectively fenced off with barbed wire, there were a number of other surface excavations that exceeded 3 metres deep that were not fenced. A sufficient barbed wire fence should also be erected around these sites to protect from accidental entry.

Also, there were a number of mine "dumps" observed throughout the Project area, large and small, other than the obvious one at the Enterprise mine shaft. The location of all large and small dumps should be compiled and ranked as to their environmental impact so that any future reclamation of the larger mine dump piles can also include the smaller piles. Each of the identified dump sites should be catalogued according location, an estimate of size, and composition. A sufficient number of grab samples should be collected from each pile, depending on size and variability, to estimate its' composition. This catalogue can then be used to rank the environmental impact of each pile with respect to deleterious elements.



A budget and required work to fulfill the above mentioned items is outlined in Item 26: Recommendations, in this report.

Environmental review assessing the environmental liabilities and risks within the New Enterprise Project has not been previously completed.

Table 2. List of New Enterprise Group of Mining Claims

| Claim Name | BLM Unpatented<br>Serial # | Acres | Pershing<br>Resources<br>Ownership | Year<br>Staked | Expiry Date   | Amount<br>Due |
|------------|----------------------------|-------|------------------------------------|----------------|---------------|---------------|
| EN 02      | AMC396425                  | 20.66 | 100%                               | 2015           | Aug. 31, 2018 | \$155         |
| EN 03      | AMC396426                  | 20.66 | 100%                               | 2015           | Aug. 31, 2018 | \$155         |
| EN 05      | AMC396428                  | 20.66 | 100%                               | 2015           | Aug. 31, 2018 | \$155         |
| EN 06      | AMC396429                  | 20.66 | 100%                               | 2015           | Aug. 31, 2018 | \$155         |
| EN 07      | AMC402287                  | 20.66 | 100%                               | 2015           | Aug. 31, 2018 | \$155         |
| EN 09      | Pending                    | 20.66 | 100%                               | 2015           | Aug. 31, 2018 | \$155         |
| EN 10      | Pending                    | 20.66 | 100%                               | 2015           | Aug. 31, 2018 | \$155         |
| EN 11      | Pending                    | 20.66 | 100%                               | 2015           | Aug. 31, 2018 | \$155         |
| EN 12      | AMC439782                  | 20.66 | 100%                               | 2016           | Aug. 31, 2018 | \$155         |
| EN 13      | AMC439783                  | 20.66 | 100%                               | 2016           | Aug. 31, 2018 | \$155         |
| EN 15      | AMC439785                  | 20.66 | 100%                               | 2016           | Aug. 31, 2018 | \$155         |
| EN 16      | AMC439786                  | 20.66 | 100%                               | 2016           | Aug. 31, 2018 | \$155         |
| EN 17      | AMC439787                  | 20.66 | 100%                               | 2016           | Aug. 31, 2018 | \$155         |
| EN 18      | Pending                    | 20.66 | 100%                               | 2016           | Aug. 31, 2018 | \$155         |
| EN 19      | AMC439788                  | 20.66 | 100%                               | 2016           | Aug. 31, 2018 | \$155         |
| EN 20      | AMC439789                  | 20.66 | 100%                               | 2016           | Aug. 31, 2018 | \$155         |
| EN 21      | AMC439790                  | 20.66 | 100%                               | 2016           | Aug. 31, 2018 | \$155         |
| EN 22      | AMC439791                  | 20.66 | 100%                               | 2016           | Aug. 31, 2018 | \$155         |
| EN 23      | Pending                    | 20.66 | 100%                               | 2016           | Aug. 31, 2018 | \$155         |
| EN 24      | AMC439792                  | 20.66 | 100%                               | 2016           | Aug. 31, 2018 | \$155         |
| EN 25      | AMC439793                  | 20.66 | 100%                               | 2016           | Aug. 31, 2018 | \$155         |
| EN 26      | AMC439794                  | 20.66 | 100%                               | 2016           | Aug. 31, 2018 | \$155         |
| EN 27      | AMC439795                  | 20.66 | 100%                               | 2016           | Aug. 31, 2018 | \$155         |
| EN 28      | AMC439796                  | 20.66 | 100%                               | 2016           | Aug. 31, 2018 | \$155         |
| EN 29      | AMC439797                  | 20.66 | 100%                               | 2016           | Aug. 31, 2018 | \$155         |
| EN 30      | AMC450942                  | 20.66 | 100%                               | 2018           | pending       | \$155         |
| EN 31      | AMC450943                  | 20.66 | 100%                               | 2018           | pending       | \$155         |
| EN 32      | AMC450943                  | 20.66 | 100%                               | 2018           | pending       | \$155         |
| EN 33      | AMC450410                  | 20.66 | 100%                               | 2018           | Aug. 31, 2018 | \$155         |
| EN 34      | AMC450411                  | 20.66 | 100%                               | 2018           | Aug. 31, 2018 | \$155         |



| Claim Name | BLM Unpatented<br>Serial # | Acres | Pershing<br>Resources<br>Ownership | Year<br>Staked | Expiry Date   | Amount<br>Due |
|------------|----------------------------|-------|------------------------------------|----------------|---------------|---------------|
| EN 35      | AMC450412                  | 20.66 | 100%                               | 2018           | Aug. 31, 2018 | \$155         |
| EN 36      | AMC450413                  | 20.66 | 100%                               | 2018           | Aug. 31, 2018 | \$155         |
| EN 37      | AMC450414                  | 20.66 | 100%                               | 2018           | pending       | \$155         |
| EN 38      | AMC450415                  | 20.66 | 100%                               | 2018           | Aug. 31, 2018 | \$155         |
| EN 39      | AMC450416                  | 20.66 | 100%                               | 2018           | Aug. 31, 2018 | \$155         |
| EN 40      | AMC450417                  | 20.66 | 100%                               | 2018           | Aug. 31, 2018 | \$155         |
| EN 41      | AMC450418                  | 20.66 | 100%                               | 2018           | Aug. 31, 2018 | \$155         |
| EN 42      | AMC450419                  | 20.66 | 100%                               | 2018           | Aug. 31, 2018 | \$155         |
| EN 43      | AMC450420                  | 20.66 | 100%                               | 2018           | Aug. 31, 2018 | \$155         |
| EN 44      | AMC450421                  | 20.66 | 100%                               | 2018           | Aug. 31, 2018 | \$155         |
| EN 45      | AMC450945                  | 20.66 | 100%                               | 2018           | pending       | \$155         |
| EN 46      | AMC450946                  | 20.66 | 100%                               | 2018           | pending       | \$155         |
| EN 47      | AMC450947                  | 20.66 | 100%                               | 2018           | pending       | \$155         |
| EN 48      | AMC450948                  | 20.66 | 100%                               | 2018           | pending       | \$155         |
| EN 49      | AMC450949                  | 20.66 | 100%                               | 2018           | pending       | \$155         |
| EN 50      | AMC450950                  | 20.66 | 100%                               | 2018           | pending       | \$155         |
| EN 51      | AMC450951                  | 20.66 | 100%                               | 2018           | pending       | \$155         |
| EN 52      | AMC450952                  | 20.66 | 100%                               | 2018           | pending       | \$155         |
| EN 53      | AMC450953                  | 20.66 | 100%                               | 2018           | pending       | \$155         |
| EN 54      | AMC450954                  | 20.66 | 100%                               | 2018           | pending       | \$155         |
| EN 55      | AMC450979                  | 20.66 | 100%                               | 2018           | pending       | \$155         |
| EN 56      | AMC450980                  | 20.66 | 100%                               | 2018           | pending       | \$155         |
| EN 57      | AMC450981                  | 20.66 | 100%                               | 2018           | pending       | \$155         |
| EN 58      | AMC450982                  | 20.66 | 100%                               | 2018           | pending       | \$155         |
| EN 59      | AMC450983                  | 20.66 | 100%                               | 2018           | pending       | \$155         |
| EN 60      | AMC450984                  | 20.66 | 100%                               | 2018           | pending       | \$155         |
| EN 61      | AMC450985                  | 20.66 | 100%                               | 2018           | pending       | \$155         |
| EN 62      | AMC450955                  | 20.66 | 100%                               | 2018           | pending       | \$155         |
| EN 63      | AMC450956                  | 20.66 | 100%                               | 2018           | pending       | \$155         |
| EN 64      | AMC450957                  | 20.66 | 100%                               | 2018           | pending       | \$155         |
| EN 65      | AMC450986                  | 20.66 | 100%                               | 2018           | pending       | \$155         |
| EN 66      | AMC450987                  | 20.66 | 100%                               | 2018           | pending       | \$155         |
| EN 67      | AMC450988                  | 20.66 | 100%                               | 2018           | pending       | \$155         |
| EN 68      | AMC450989                  | 20.66 | 100%                               | 2018           | pending       | \$155         |
| EN 69      | AMC450990                  | 20.66 | 100%                               | 2018           | pending       | \$155         |



| Claim Name | BLM Unpatented<br>Serial # | Acres | Pershing<br>Resources<br>Ownership | Year<br>Staked | Expiry Date | Amount<br>Due |
|------------|----------------------------|-------|------------------------------------|----------------|-------------|---------------|
| EN 70      | AMC450991                  | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 71      | AMC450992                  | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 72      | AMC450958                  | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 73      | AMC450959                  | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 74      | AMC450960                  | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 75      | AMC450993                  | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 76      | AMC450994                  | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 77      | AMC450995                  | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 78      | AMC450996                  | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 79      | AMC450997                  | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 80      | AMC450998                  | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 81      | AMC450999                  | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 82      | AMC450961                  | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 83      | AMC450962                  | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 84      | AMC450963                  | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 85      | AMC451000                  | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 86      | AMC451001                  | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 87      | AMC451002                  | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 88      | AMC451003                  | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 89      | AMC451004                  | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 90      | AMC451005                  | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 91      | AMC451006                  | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 92      | AMC450964                  | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 93      | AMC450965                  | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 94      | AMC450966                  | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 95      | AMC450967                  | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 96      | AMC450968                  | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 97      | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 98      | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 99      | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 100     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 101     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 102     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 103     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 104     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |



| Claim Name | BLM Unpatented<br>Serial # | Acres | Pershing<br>Resources<br>Ownership | Year<br>Staked | Expiry Date | Amount<br>Due |
|------------|----------------------------|-------|------------------------------------|----------------|-------------|---------------|
| EN 105     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 106     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 107     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 108     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 110     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 111     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 112     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 113     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 114     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 116     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 117     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 118     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 119     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 120     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 121     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 127     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 128     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 129     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 135     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 136     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 137     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 138     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 139     | AMC451026                  | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 140     |                            | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 141     | AMC451027                  | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 142     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 143     | AMC451028                  | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 144     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 145     | AMC451029                  | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 146     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 147     | AMC451030                  | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 148     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 149     | AMC451031                  | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 150     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 151     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |



| Claim Name | BLM Unpatented<br>Serial # | Acres | Pershing<br>Resources<br>Ownership | Year<br>Staked | Expiry Date | Amount<br>Due |
|------------|----------------------------|-------|------------------------------------|----------------|-------------|---------------|
| EN 152     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 153     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 154     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 155     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 156     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |
| EN 157     | Pending                    | 20.66 | 100%                               | 2018           | pending     | \$155         |

Table 3. List of Mohave Standard Group of Mining Claims

| Claim Name | BLM Unpatented<br>Serial # | Acres | Pershing<br>Resources<br>Ownership | Year<br>Staked | Expiry Date   | Amount<br>Due |
|------------|----------------------------|-------|------------------------------------|----------------|---------------|---------------|
| MH 01      | AMC444619                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 02      | AMC444620                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 03      | AMC444621                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 04      | AMC444622                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 05      | Pending                    | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 06      | AMC444623                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 07      | AMC444624                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 08      | AMC444625                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 09      | AMC444626                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 10      | AMC444627                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 11      | AMC444628                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 12      | AMC444629                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 13      | AMC444630                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 14      | AMC444631                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 15      | AMC444632                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 16      | AMC444633                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 17      | AMC441683                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 18      | AMC441684                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 19      | AMC441685                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 20      | AMC441686                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 21      | AMC441687                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 22      | AMC441688                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 23      | AMC441689                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 24      | AMC441690                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 25      | AMC441691                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 26      | AMC441692                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |




| Claim Name | BLM Unpatented<br>Serial # | Acres | Pershing<br>Resources<br>Ownership | Year<br>Staked | Expiry Date   | Amount<br>Due |
|------------|----------------------------|-------|------------------------------------|----------------|---------------|---------------|
| MH 27      | AMC441693                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 28      | AMC441694                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 29      | AMC441695                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 30      | AMC441696                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 31      | AMC441697                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 32      | AMC441698                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 33      | AMC441699                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 34      | AMC441700                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 35      | AMC441701                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 36      | AMC441702                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 37      | AMC441703                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 38      | AMC444634                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 39      | AMC444635                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 40      | AMC444636                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 41      | AMC444637                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 42      | AMC444638                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 43      | AMC444639                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 44      | Pending                    | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 45      | AMC444640                  | 20.66 | 100%                               | 2017           | Dec. 31, 2018 | \$155         |
| MH 46      | AMC444641                  | 20.66 | 100%                               | 2018           | 2019?         | \$155         |
| MH 53      | AMC450508                  | 20.66 | 100%                               | 2018           | 2019?         | \$155         |
| MH 54      | Pending                    | 20.66 | 100%                               | 2018           | 2019?         | \$155         |
| MH 55      | AMC450509                  | 20.66 | 100%                               | 2018           | 2019?         | \$155         |
| MH 56      | Pending                    | 20.66 | 100%                               | 2018           | 2019?         | \$155         |
| MH 57      | AMC450510                  | 20.66 | 100%                               | 2018           | 2019?         | \$155         |
| MH 58      | Pending                    | 20.66 | 100%                               | 2018           | 2019?         | \$155         |
| MH 59      | AMC450511                  | 20.66 | 100%                               | 2018           | 2019?         | \$155         |
| MH 60      | Pending                    | 20.66 | 100%                               | 2018           | 2019?         | \$155         |
| MH 61      | AMC450512                  | 20.66 | 100%                               | 2018           | 2019?         | \$155         |
| MH 62      | Pending                    | 20.66 | 100%                               | 2018           | 2019?         | \$155         |
| MH 63      | AMC450513                  | 20.66 | 100%                               | 2018           | 2019?         | \$155         |
| MH 64      | Pending                    | 20.66 | 100%                               | 2018           | 2019?         | \$155         |
| MH 65      | AMC450514                  | 20.66 | 100%                               | 2018           | 2019?         | \$155         |
| MH 66      | Pending                    | 20.66 | 100%                               | 2018           | 2019?         | \$155         |
| MH 67      | AMC450515                  | 20.66 | 100%                               | 2018           | 2019?         | \$155         |



| Claim Name | BLM Unpatented<br>Serial # | Acres | Pershing<br>Resources<br>Ownership | Year<br>Staked | Expiry Date | Amount<br>Due |
|------------|----------------------------|-------|------------------------------------|----------------|-------------|---------------|
| MH 68      | Pending                    | 20.66 | 100%                               | 2018           | 2019?       | \$155         |
| MH 69      | AMC450516                  | 20.66 | 100%                               | 2018           | 2019?       | \$155         |
| MH 70      | Pending                    | 20.66 | 100%                               | 2018           | 2019?       | \$155         |
| MH 71      | AMC450517                  | 20.66 | 100%                               | 2018           | 2019?       | \$155         |
| MH 72      | Pending                    | 20.66 | 100%                               | 2018           | 2019?       | \$155         |
| MH 73      | AMC450518                  | 20.66 | 100%                               | 2018           | 2019?       | \$155         |
| MH 74      | Pending                    | 20.66 | 100%                               | 2018           | 2019?       | \$155         |
| MH 75      | AMC450519                  | 20.66 | 100%                               | 2018           | 2019?       | \$155         |
| MH 76      | Pending                    | 20.66 | 100%                               | 2018           | 2019?       | \$155         |
| MH 77      | AMC450520                  | 20.66 | 100%                               | 2018           | 2019?       | \$155         |
| MH 78      | Pending                    | 20.66 | 100%                               | 2018           | 2019?       | \$155         |
| MH 79      | AMC450521                  | 20.66 | 100%                               | 2018           | 2019?       | \$155         |
| MH 80      | Pending                    | 20.66 | 100%                               | 2018           | 2019?       | \$155         |
| MH 81      | AMC450522                  | 20.66 | 100%                               | 2018           | 2019?       | \$155         |
| MH 82      | AMC450523                  | 20.66 | 100%                               | 2018           | 2019?       | \$155         |
| MH 83      | AMC450524                  | 20.66 | 100%                               | 2018           | 2019?       | \$155         |
| MH 84      | AMC450525                  | 20.66 | 100%                               | 2018           | 2019?       | \$155         |
| MH 85      | AMC450526                  | 20.66 | 100%                               | 2018           | 2019?       | \$155         |
| MH 86      | AMC450527                  | 20.66 | 100%                               | 2018           | 2019?       | \$155         |
| MH 87      | AMC450528                  | 20.66 | 100%                               | 2018           | 2019?       | \$155         |
| MH 88      | AMC450530                  | 20.66 | 100%                               | 2018           | 2019?       | \$155         |
| MH 89      | AMC450529                  | 20.66 | 100%                               | 2018           | 2019?       | \$155         |
| MH 90      | AMC450531                  | 20.66 | 100%                               | 2018           | 2019?       | \$155         |
| MH 91      | AMC450532                  | 20.66 | 100%                               | 2018           | 2019?       | \$155         |
| MH 92      | AMC450533                  | 20.66 | 100%                               | 2018           | 2019?       | \$155         |
| MH 93      | AMC450534                  | 20.66 | 100%                               | 2018           | 2019?       | \$155         |
| MH 94      | AMC450535                  | 20.66 | 100%                               | 2018           | 2019?       | \$155         |
| MH 95      | AMC450536                  | 20.66 | 100%                               | 2018           | 2019?       | \$155         |
| MH 96      | AMC450537                  | 20.66 | 100%                               | 2018           | 2019?       | \$155         |







# Item 5: Accessibility, Climate, Local Resources, Infrastructure, and Physiography

#### **Location and Access**

The New Enterprise Project is accessed by the paved highway interstate 40 to Blake Ranch Rd. Turning south onto Blake Ranch Rd. for approximately 3 kilometers to a network of ATV or off-road vehicle trails. Blake Ranch Rd. is a well maintained public two lane gravel road. Leading off of Blake Blanch Road the property has several relatively clear ATV trails cutting across the property which makes the claims on the property very accessible by motorized vehicle or on foot.

#### Climate and Vegetation

The climate of the region is arid, with hot summers and mild winters. The temperature of June, July, and August averages 34 to 36 Celsius (92 to 95 degrees Fahrenheit) during the day and annual precipitation is about 127 mm (5 inches) per year. During hot weather it is largely concentrated in cloud-bursts, and the country is subject to sudden and violent winds, which in the valleys are often accompanied by sand storms. Most of the mountains as well as the valleys are free of snow during winter, and the highest mountains become free of it in early summer. The vegetation is of the semi-arid desert type and is confined mostly to the valleys, mesas, and lower slopes of the mountains. It consists mainly of cacti, greasewood, yuccas, soap weed, sage, and cat-tails.

#### Local Resources and Infrastructure

The town of Kingman with a current population of approximately 29,000 people serves as the commercial center for northwestern Arizona. Interstate 40 and the Santa Fe railroad both service Kingman. There is a residential power line that runs parallel to the property along Blake Ranch Rd. Deep, high-yield wells located in the valley alluvium are currently the main supply source for major water users in the basin including the City of Kingman and outlying housing developments. The town includes heavy equipment and drilling contracting services and trained workforce for all typically required trades. Exploration and mining services within the State of Arizona are well established and the closest currently operating mine is the Bagdad Mine located 45 miles (73 kilometres) to the southeast.

#### Physiography

The project area is located within the Hualapai Mountains approximately 1,540 meters above sea level. The area consists of numerous valleys and steep hills with an elevation relief of 100 meters. The area is covered with small vegetation consisting primarily of various cactuses and grass land with small trees usually less than 3 meters tall. According to historical reports on the Standard Mine the water table was encountered 30 meters below surface.



## Item 6: History

The earliest discoveries in the region began in the late 1860's within the Chloride and Mineral Park Mining Districts on the west slope of the Cerbat Mountain Range, 10 miles northeast of Kingman, Arizona. In 1871, high-grade Ag-Pb-Zn was then discovered 12 miles east of Kingman, on the east slope of the Hualapai Mountain Range, within the Maynard Mining District (Wheeler, 1871). In 1909, Schrader describes the high-grade Ag, Au, Pb, Zn mineralized veins of the Chloride and Mineral Park Mining Districts as being similar to those in the Maynard Mining District, where both the New Enterprise and Mohave Standard properties are currently located.

Early mining in the 1860's included the shipment of very high-grade concentrates by river steamer along the Colorado River to San Francisco, and then to England, for processing. The construction of the Selby smelter in 1870, in San Francisco, and the construction of a railway to Kingman in 1882, improved mining operations so that lower, but still relatively high-grade rocks, could be mined to deeper levels than previously. After initially being considered a silver producing mining district, the increasing price of gold resulted in both the Chloride and Mineral Park Mining Districts changing their focus to gold as the primary source of revenue. A drop in both precious metal prices toward the end of the 1800's resulted in a significant decrease in mining activity until the metal prices improved in the early 1900's. Based on fragmented records, it appears that the increasing precious metal prices in the early 1900's generated significant exploration and mining operations at the Enterprise mine, and possibly the Century mine, within the Maynard Mining District. Rising molybdenum prices, leading up to World War I, resulted in the subsequent development of the Telluride Chief, now known as the Standard Mine. The subsequent collapse of the molybdenum prices at the end of World War I resulted in the closing of Standard Mine in 1919. No other significant mining operation locations were reported or observed as being evident during the field examination by the authors within the New Enterprise Project.

After what appears to be a brief period of very little work through the 1920's, another phase of mining activity appears to occur through the 1930's and into the early 1940's. This time, mining appears to have focused on the continuation of previous work at the Enterprise and Standard mines. At the Enterprise Mine, the Jewell tunnel was developed along strike, and 450 metres south, of the Enterprise shaft. The mined material is thought to have been shipped to Prescott, Arizona, for processing. Mining in the Jewell tunnel appears to have ended after the collapse of the Enterprise shaft in 1939. At the Standard Mine, in 1939, Mr. Walter Meyer dewatered the mine and extracted seven train car loads of vein material and also shipped them to Prescott, Arizona, for processing. From this point on, it appears that the only work at these mining sites has focused on trying to process the dump material available on the surface next to the shafts.

After what appears to be a long hiatus in activity within the Maynard mining district since the 1940's, a rejuvenation of interest began in the 1960's. Up until the 1960's, exploration and mining in the Hualapai and Cerbat Mountain ranges focused entirely on the high-grade Ag, Au, Pb, Zn veins. In the 1960's, the discovery of low-grade Cu-Mo porphyry mineralization within the Mineral Park mining district entirely changed the exploration focus to bulk tonnage low-grade porphyry Cu-Mo deposits. Between the 1960's and 1980's, exploration and mining companies acquired ground within and adjacent to the New Enterprise and Mohave Standard properties looking for large low-grade porphyry-style mineral deposits. Secondary sources referencing companies searching for large porphyry-style mineralization during this time include, in apparent order of appearance, Union Carbide Nuclear Company, Bear Creek Exploration in the 1960's, Continental Oil and Gas, Hanna, Keer-McGee, Cerro Mineral Exploration Company, and



Noranda Exploration Incorporated, and Amax Exploration Inc. in the 1970's, and Santa Fe Pacific in the 1990's. Most of their work appears to overlap, and extend to the south and southwest, on the Mohave Standard mining claims. It appears that Continental Oil and Gas and Santa Fe Pacific also did work east of the New Enterprise mining claims. Of these companies, the only record found of significant work being completed was by Bear Creek Exploration. Bear Creek Exploration completed a surface geochemical survey and drilled a minimum of 15 drill holes in the Standard Mine area, within the current Mohave Standard mining claim group.

While the larger exploration companies were exploring for the large tonnage, low-grade deposits, Mr. Gilbert Whitsett was exposing the North and South cuts along the Enterprise mine veins between 1974 and 1990. Between 2004 and 2014, Simple Recovery Inc. completed assay and mineral processing test work of the Enterprise mine dump pile. From 2005 to present, Bell Copper Corporation acquired and started exploring the Kabba Project for a decapitated porphyry system overlapping, and beyond, the eastern edge of the Mohave Standard mining claim group. In 2015, Pershing Resources Company Inc., acquired and started exploration work within the New Enterprise project, which includes the New Enterprise and Mohave Standard properties. Surface exploration and sampling work completed during this time is included within this technical report.

#### New Enterprise Project Area and Relevant History

The following is a chronological summary of exploration, mining, research, and long standing claim holders pertinent to the New Enterprise and Mohave Standard properties gold, silver, copper, molybdenum, lead, and zinc mineralization. Previously, such a compilation was not available. The summary also includes important work completed at the Chloride and Mineral Park Mining Districts, where more detailed examination of the regional style of mineralization has been undertaken. The listing of long standing past claim holders, or estate survivors, has been included in anticipation that they may still be reachable and have documents that would add to the historical record. Note, the absence of historical claim maps makes it difficult to determine the exact location of any of the claims other than being located within the corners of specific section quadrants.

#### Prior to 1909 Enterprise Mine (From Schrader, 1909)

The Enterprise Mine was in operation at the time Mr. Schrader compiled his report in 1909. It was originally owned by the Enterprise Mining Reduction and Improvement Company. The mine workings were summarized by Mr. Schrader as consisting of a 300 foot deep shaft with cross-cuts and drifts totaling another 300 feet. The veins cut through older granite county rock and include associated porphyries. Several of the veins are described as striking northwest, dipping northeast, up to 30 feet wide (typically 6 to 14 feet), more than one mile long, and exhibit well-defined outer contacts. The mined rock includes quartz, galena, pyrite, and chalcopyrite with significant gold and silver values. No production records or documents with mining grades appear to be available for the Enterprise Mine.

It appears that soon after Schrader published his report in 1909, mine workings from the Enterprise shaft either slowed significantly or stopped until the 1930's. Between 1930 and 1939, mining concentrated on the development of the Jewel tunnel. It appears that the material mined from the Jewell tunnel was shipped 140 miles to Prescott, Arizona, for processing. Mining of the Jewell tunnel is considered to have ended with the collapse of the Enterprise shaft.

At the present time, a pile of mine dump material is present on the south side of the shaft extending down to a dry creek bed. The mined material is believed to have been brought up the shaft and



immediately dumped along the side of the hill adjacent to the shaft. Close examination of the dump material clearly indicates that it is zoned. The west side appears to be predominantly vein material and the east side predominantly waste rock. The unlocked monetary potential of the pile, and other dump piles at mine sites in the area, have been the focus of much discussion over the years. The extensive oxidation of the minerals, relatively small proportion of high-grade material within the pile, the complex and varied mineralogy and metal content, and the absence of a nearby smelter, make extraction of the contained metals for a profit very difficult.

1949 to 1951 Detailed Descriptions of Chloride and Mineral Park Mining Districts The first detailed descriptions, since Schrader, 1909, of the Chloride and Mineral Park Mining Districts were completed between 1949 and 1951. Thomas (1949) mostly focused on the geology and the distribution of the veins, while Dings (1951) mostly focused on describing and characterizing the veins.

1952 to 2000 Longstanding Continuous Claim Blocks - Mohave Standard Mining Claims The following list is compiled from the Bureau of Land Management records for longstanding unpatented mining claim holders in, and around, the Standard Mine area after Mr. Meyer extracted seven train car loads from the Standard Mine (See Item 23: Adjacent Properties). It is unclear which of these claims included the Standard or Century Mines, and, what type, if any, work was completed.

1952 to 1999: Mr. John Cochrane

1958 to 2000: Mr. Gary Overson and Mrs. Linda Overson

1962 to 1992: Mr. Don Laughlin

1979 to 2000: Mr. Brad Arch and Mr. Jeff Arch

1980 to 2000: Prescott / Skinner 1987 to 2000: Ms. Susan Jaramillo

2000 to 2013: Open Ground

#### 1959 Geological Map of Mohave County

In 1959, a geological map at a scale of 1:375,000 of the Mohave County was prepared by Wilson, E.D., and Moore, R.T. The map illustrates the geological similarities between the Maynard mining district and the Chloride and Mineral Park mining districts, but is not an appropriate scale to illustrate the geological associations of the mineralization in any of these mining districts. No other map that includes the Maynard Mining District at a more detailed representation appears to have been completed since 1959.

#### 1974 to 1990 Mr. Gilbert Whitsett, Enterprise Mining Claims

One of the most prominent workers within the New Enterprise mining claims is Mr. Gilbert Whitsett. Between 1974 and 1990 he completed significant surface workings along the north and south extensions of the Enterprise mine vein. Other than a newspaper article from Destination Kingman, November 14, 1979, where he states he is making a "comfortable life from Arizona earth", no other records of his work were found by the authors. Mr. Whitsett's biggest legacy is the excavation of what is now referred to as the "North Cut" and "South Cut" locations. These excavations clearly illustrate the continuity of the Enterprise vein for more than 2 kilometres and provides excellent exposures for examination of the vein system.

1974 MSc Research by Vuich, J.S., Mineral Evaluation of the Wheeler Wash In 1974, Vuich, J.S., completed an MSc thesis that included a mineral evaluation of the Wheeler Wash, financially supported by Noranda Exploration Incorporated. The northern portion of the study area included Pershing Resources' New Enterprise and Mohave Standard properties. Vuich (1974) concludes



that the mineralization within the area conforms to a mesothermal, high molybdenum, porphyry copper model of formation. He described the copper and molybdenum primarily within chalcopyrite and molybdenite occurring as disseminated blebs and in small veins and veinlets. His work is also the first to suggest a west to east lateral faulting along the Hualapai fault, displacing the Laramide monzonite, and exposing the current level of porphyry-style mineralization within the Standard Mine area, and to the south and southwest of the Standard Mine. He also noted a lateral (not concentric) zonation of wall rock alteration from potassic, to sericite, then argillite and propylitic alteration extending outward from areas of high density mineralization and veining.

#### 1981 PhD Research by Wilkinson, W.H., Mineral Park Mine

Following Vuich (1974), Wilkinson completed a PhD study of the alteration and mineralization of the Mineral Park Mine. His work built of Thomas (1949) and Dings (1951) descriptions of the geology and vein characterization by adding fluid inclusion data to the depth of formation and paragenesis of the mineralization. Wilkinson (1981) suggested that there is a strong genetic relationship between the porphyry copper-molybdenum mineralization and surrounding precious and base metal vein mineralization. He also noted that there is a pronounced metal zonation outward from the porphyry copper-molybdenum core, to lead-zinc-rich veins, surrounded by a periphery of gold-silver-rich veins. In addition, like what Vuich (1974) noted in the Maynard Mining District, the zonation is not concentric, but centered along linear structures. These structures were noted to preferentially concentrate along zones of weakness, typically between Precambrian supracrustal rocks and relatively younger Precambrian granitic rocks.

1992 to 2000 Claim Block Holders - New Enterprise Mining Claims since Mr. Gilbert Whitsett The following list is compiled from the Bureau of Land Management records for longstanding unpatented mining claim holders in, and around, the Enterprise Mine area after Mr. Gilbert Whitsett claim holdings lapsed. It is unclear which of these claims included the Enterprise Mine or the surrounding workings, and, what type, if any, work was completed.

1992 to 2000: Ms. Erna Krell 1993 to 1998: Mr. Don Adams 1999 to 2004: Open Ground

#### 2004 to 2014 Simple Recovery Inc., New Enterprise Claim Block

Simple Recovery Inc. staked eight unpatented claims in 2004. The outline of these claims match Mr. Whitsett's New Enterprise claim block that was held by him in good standing from 1974 to 1990. Simple Recovery focused primarily on evaluating, testing and processing the mined dump pile situated on the south side to the Enterprise Mine shaft. An internal Simple Recovery report by Bill Earnshaw (2011) describes and illustrates the trenching across the top of the dump pile and extracting a sample for test processing. The results discussed in the report were based on in-house testing and assaying methods with follow-up assays at other laboratories. The scope of this technical report and the initial 2018 exploration work did not include evaluating or reviewing the Enterprise mine dump pile, nor the inhouse methods utilized by Mr. Earnshaw. Other than confirming the Enterprise dump pile mineralization, as had Bain, D.J., 2013, no consideration was given by the authors to confirm the inhouse processing or assaying methods. As a result, none of the Simple Recovery results were used, or considered, by the authors to evaluate the potential of the New Enterprise Project.

In 2013, Simple Recovery signed an option agreement with Bridge Metal Processing, LLC., a private company based in Tacna, Arizona. Subject to the fulfillment of certain terms, Bridge Metal Processing



could earn a 100% ownership in the New Enterprise mining claims. As part of their initial work on the New Enterprise, they commissioned Dr. Duncan J. Bain, P.Geo., to prepare a technical report for the eight unpatented claims that, at the time, made-up the New Enterprise mining claims. The sampling completed by Dr. D.J. Bain as part of the technical report, was the first program to independently confirm the mineralization at the Enterprise Mine. No records or documents reviewed by the authors suggest any other work was completed by Bridge Metal Processing up to the termination of their agreement on December 15, 2015.

With Bridge Metal Processing not fulfilling the conditions of their option agreement, Simple Recovery began seeking out other partners. On May 15, 2015, Pershing Resources Company Inc. purchased 100% of Simple Recovery Inc. and all its assets, including the eight unpatented claims making up the original New Enterprise mining claims. Ownership of the claims was transferred from Simple Recovery Inc. to Pershing Resources Company Inc. in August 2015. The Bridge Metal Processing option agreement for the New Enterprise claim group between Simple Recovery Inc., now Pershing Resources Company Inc., expired on December 15, 2015.

2013 to 2016 A&M Minerals Inc., — Mohave Standard Exploration, Drilling Program In 2013, A&M Minerals Inc., staked the original 46 unpatented claims that makeup the Mohave Standard mining claims. The following is a summary of A&M Minerals exploration work as outlined in the 2014 internal draft technical report completed by Croteau, 2014.

Exploration work competed by A&M Minerals in 2013 consisted of data compilation, reconnaissance fieldwork, surface sampling, and diamond drilling. Reconnaissance fieldwork identified numerous surface excavations on veins up to 2 metres wide that did not appear to be documented. While completing the fieldwork, a total of 137 surface samples were collected randomly within the Mohave Standard mining claims, including a number of samples at the Standard Mine. They interpreted their field observations and sample results as identifying a 1.5 km by 0.6 km area of molybdenum values up to 0.4% and copper values up to 0.7%. Completion of three drill holes totaling 1,157 metres, confirmed surface bedrock mineralization extending to a depth of at least 350 metres within a host rock monzonite. Two of the drill holes were completed northeast of the Standard Mine, and one of the drill holes was completed south of the Standard Mine (see Item 10: Drilling for additional descriptions of the drilling program). Croteau (2014) reports that DDH-1 and DHH-2 were considered to have intersected the molybdenum portion of the porphyry system and DDH-3 intersected the beginning of the more Curich portion of the system. The most significant intersections reported for the drill holes include DDH-1 (northeast of Standard Mine) with a 0.03% copper and 0.03% molybdenum along 69.80 m of core length and DDH-3 (south of Standard Mine) with a reported 0.07% copper and 0.04% molybdenum along 127.25 metres of core length.

Based on their results, Croteau (2014) suggests previous exploration companies did not take into consideration the structural complexities of faulting and tilting on the porphyry shape and orientation. Based on their work, they considered the porphyry system within the Mohave Standard to be inverted. No structural data is presented in the technical report to substantiate this interpretation. In 2016, A&M Minerals Inc. let the Mohave Standard mining claims unpatented claims expire.

2015 MSc Research by Bain, W.M., Application of Fluid Inclusion Data, Kabba Project In 2015, Mr. W.M. Bain completed a Master of Science thesis examining fluid inclusion data of samples collected from what is now the New Enterprise project and Bell Copper Corporation's Kabba project. Based on the fluid inclusion data, the Mohave Standard and New Enterprise properties which are



located west of the Hualapai fault, are considered to be indicative of "footwall" mineralization. Whereas, the Kabba Project, located east of the Hualapai fault, is considered to be the "hanging wall". It is suggested from this work that the top of the porphyry system, originally situated above the New Enterprise and Mohave Standard properties, has been faulted and transported laterally eastward, is now lying within the Kabba Project. This was originally suggested by Vuich (1974) for the Standard Mine area and south to southwest of the Standard Mine. Bell Copper Corp. has used this as an important exploration model since the inception of the Kabba Project in 2005. A recently posted corporate presentation on Bell Copper Corp. website (http://www.bellcopper.net) has updated the cross-section to not include the New Enterprise mining claim area.

#### 2005 to Present Bell Copper Corporation, Kabba Project

Bell Copper Corporation has been the most active exploration company within Maynard Mining District since it began exploring the Kabba Project in 2005. Contiguous with the eastern boundary of the New Enterprise Project, Bell Copper has amassed a land holding of unpatented mining claims and sublease mineral interests totaling approximately 13,000 acres. Much of the work between 2005 and 2013 is summarized in the filed NI 43-101 technical report authored by Sergio Pastor, QP, and dated October 30, 2013.

Over the years, Bell Copper has completed multiple geophysical surveys; aeromagnetic, Natural Source Audio Magneto-Telluric (NSMAT), gravity, and seismic surveys. Up to 2017, Bell Copper had completed 12 drill holes. The most significant intersections were reported in drill hole K-10 as 0.52 g/t gold, 193 g/t silver, 0.18% copper, 1.44% lead and 1.43% zinc across 0.06 m at a depth of 1,234.0 metres and 0.09 g/t gold, 51 g/t silver, 0.44% copper, 2.18% lead, and 10.05% zinc across 0.10 m at a depth of 1,329.03 (Bell Copper press release dated September 19, 2012). These intersections were described as having characteristics similar to the material mined at the past producing Century and Enterprise mines. Additional reported assays for K-10 also included a 125 meter intersection with an average grade of 0.03% copper occurring as disseminated chalcopyrite.

On April 19<sup>th</sup>, 2016, Kennecott Exploration Company, a Rio Tinto Group, entered into an option agreement with Bell Copper. Since the beginning of the option agreement, Kennecott has relogged and resampled previously drilled holes K-1 to K-12, completed seven drill holes (K-13 to K19) and completed additional geophysical surveys. In total, Bell Copper reports (January 25<sup>th</sup>, 2018) that Kennecott logged and assayed approximately 5,806 metres of new and historic drill core (up to K-17) with expenditures exceeding \$3 million dollars. The press release also summarized the assay results of K-8 through K-19 as having reported "anomalous values of one or more of the following elements: arsenic, copper, gold, lead, molybdenum, rhenium, silver, sulphur, tellurium, and zinc – consistent with their proximity to the envisioned porphyry copper target." The most significant intersection of gold mineralization was reported for K-17 at a depth of 481 metres that averaged 0.57 grams per tonne gold along 21 metres of core length. The gold is described as hosted in oxidized hematitic stockwork veinlets and breccia cutting dacite porphyry (press release dated January, 25, 2018). Kennecott has recently notified Bell Copper that it will be withdrawing from the option agreement (press release dated March 16, 2018). Bell Copper has announced that it is planning to complete additional drilling in the second quarter of 2018.

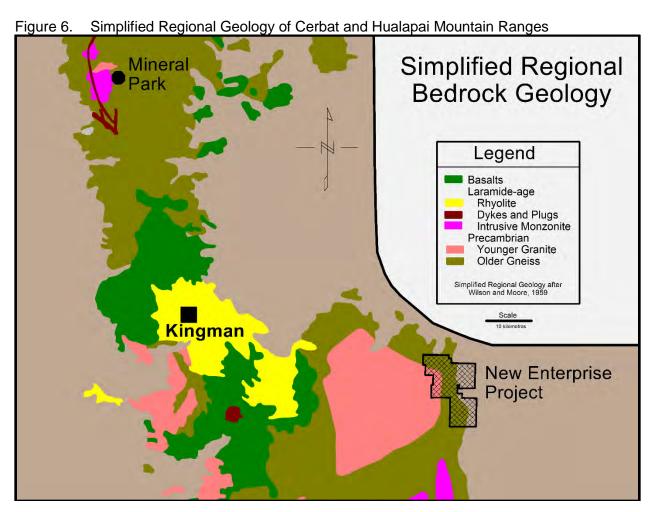
2015 to Present Pershing Resources Company Inc., New Enterprise Project Pershing Resources Company Inc. acquired the original eight New Enterprise claims in 2015. Work completed in 2015 and 2016 focused primarily on mineral processing testwork of the Enterprise mine dump pile. A cost effective saleable product could not be achieved during this work.



In early 2016, Pershing Resources requested Dr. Duncan Bain, P.Geo. to reissue the 2013 technical report prepared for Bridge Metal Processing, LLC. In the report, there was no mention of additional exploration work within the New Enterprise mining claims since 2013 and a site visit by Dr. Bain was not completed.

Pershing Resources increased the unpatented mining claim holdings of the New Enterprise mining claim group by 24 unpatented mining claims later in 2016. At this time, a total of 31 grab samples were collected from locations of known mineralization and submitted for multi element analysis. Results of these samples are discussed in Item 9 Exploration.

In 2017, Pershing Resources further increased their unpatented mining claim holdings in the region by adding the Mohave Standard mining claim group that included 46 unpatented mining claims totaling 951 acres. As in 2016, grab samples were collected and submitted for multi element analysis during the staking program. A total of five samples were collected from the Jewell tunnel area. The results of these samples are discussed in Item 9 Exploration. In addition, approximately 2 kilograms of material was collected from the Enterprise Mine dump pile and submitted to AuRic Metallurgical Laboratories of Salt Lake City, Utah to test mineral gold leachability. These results are discussed in Item 13 Mineral Processing and Metallurgical Testing.


Pershing Resources' exploration and expansion of unpatented mining claims has continued into 2018. Combined, the unpatented mining claims that makeup the New Enterprise group and the Mohave Standard group, are now referred to as the New Enterprise Project. The completed and pending unpatented mining claims that make-up the New Enterprise Project equals 231, totaling 4,772 acres. In addition to the property expansion, 106 grab samples were collected from areas of known mineralization for multi-element analysis from within the New Enterprise group of mining claims. During the collection of the grab samples, host rock and vein characterization was also completed. The results of this work is discussed in Item 9: Exploration within this report.



# Item 7: Geological Setting and Mineralization

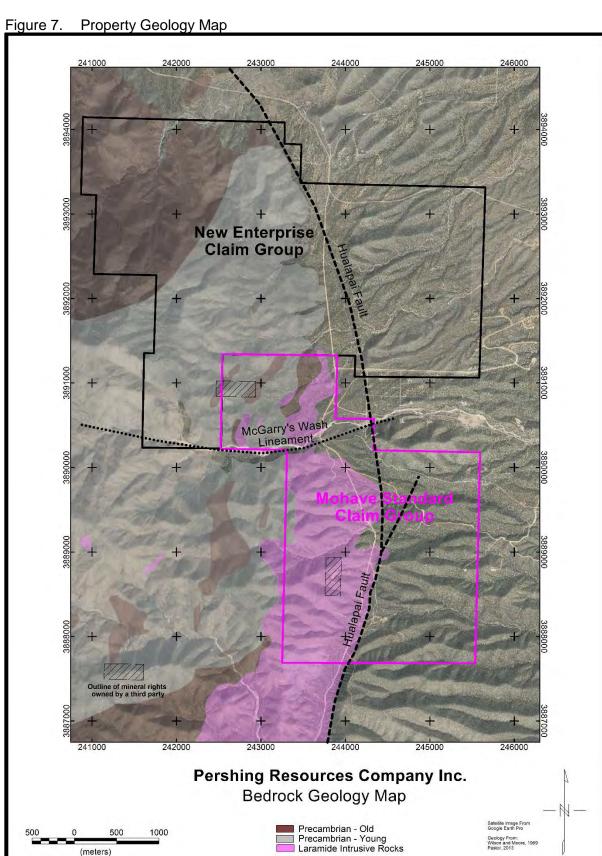
#### Regional Geology

Northwestern Arizona is geologically comprised of the high Colorado Plateau to the east and the Basin and Range Province to the west. Numerous orogenic episodes have formed the geology of Arizona from the Late Precambrian onward. The Jurassic and Cretaceous Laramide orogeny from 90 to 65 Ma is most significant in regards to the Cu-Mo porphyry in the Basin and Range Province. This orogeny can be subdivided into three broad sequential events that young eastward. These events include: 1) early east-directed thrusting, folding and basement uplift; 2) hydrous metaluminous arc magmatism; and 3) hydrous peraluminous plutonism accompanied by southwest-directed thrust faulting (Keith and Wilt, 1986). The resultant orogenic mountain ranges trend north, northwest, nearly parallel to the edge of the Colorado Plateau including the Cerbat/Hualapi mountains. The New Enterprise Project is situated on the northeast edge of the Hualapi Mountains within the Basin and Range Province. A simplifed regional bedrock geology of the Cerbat and Hualapai mountains ranges based on Wilson and Moore (1959) is outlined in Figure 6.





According to (Keith and Wilt, 1986) within the Basin and Range Province, the Laramide could be subdivded into early initial, initial, medial and late stages. The medial stage of the Laramide (~65-55 Ma) encompasses the emplacement of calc-alkaline metaluminuous epizonal plutons within the Cerbat and Huallapai mountain (i.e. Morenci Assemblage) and was accompanied by the emplacement of dike swarms and associated copper porphyry mineralization (Keith and Wilt, 1986). The Morenci Assemblage or the Laramide porphyry province extends from Morenci-Metcalf in the east, to Pima in the south and to Mineral Park and Ray in the northwest where magmatism moved from west to east through time from 75 to 70 Ma in the northwest to 62 to 51 Ma in eastern Arizona (Keith and Wilt, 1986). Porphryies in this assemblage/province include Ajo, Ray, Christmas, San Manuel, Mineral Park, Bagdad, Global-Miami, Morenci and Superior.

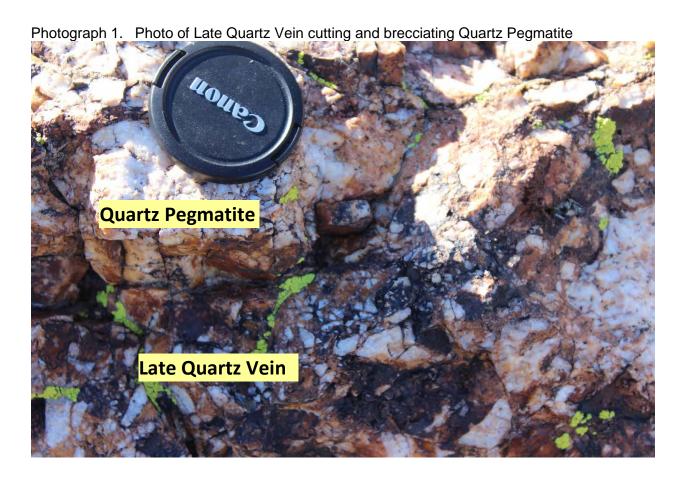

At Mineral Park the Mineral Park granite monzonite yielded an age of  $^{\sim}$  71.5 Ma (Damon et al., 1964) and to the northeast, the Granite Mountain porphyry and associated copper prophyry deposits in the Ray area yielded K-Ar dates of 59.5 to 63.2 Ma (i.e. Rose and Cook, 1965). The New Enterprise Project lies within the northwest southeast trend of the Morenci Assemblage between the Ray and Mineral Park deposits to the northwest and the Bagdad deposit to the southeast (Figure 3).

#### Property Geology

Property scale geological and structural mapping has not been completed within the New Enterprise Project. This type of mapping is fundamental for effective advancement of mineral exploration work. The property scale geology and structural descriptions outlined below are based on compiling the Mohave County scale mapping (Wilson and Moore, 1959) and regional scale geological and structural map presented in Pastor (2013) integrated with cursory observations obtained by the authors during their on-site field visit. The data and discussion present below is not intended, nor should it be used as a substitute for a property scale geology and structural map for the New Enterprise Project.

Bedrock geology within the New Enterprise Project consists primarily of Precambrian-age rocks with lesser Laramide intrusive rocks (Figure 7). Significant structures transect the entire Project area and more localized structures are present. Alteration is generally related to the Laramide intrusive rocks and focused around structures located within the Project area.

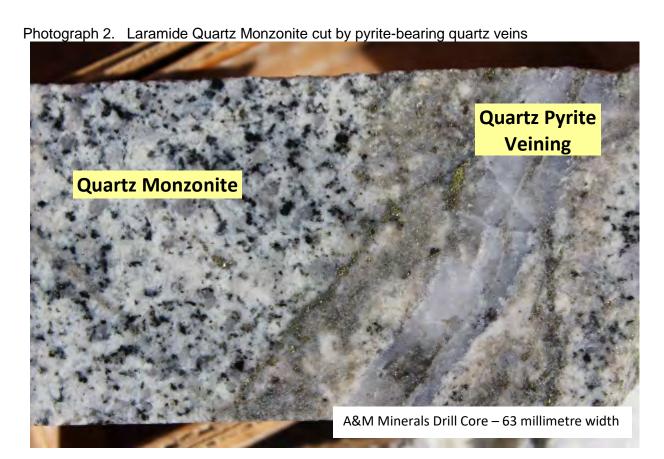





(meters)
WGS 84 / UTM zone 12S



### Precambrian Rocks


The Precambrian supracrustal rocks appear to be the oldest rocks within the Project area. They consist primarily of metamorphosed volcanic and sedimentary rocks and vary significantly in dominant rock types and textures. The supracrustal rocks are intruded by a relatively younger medium- to coarse-grained granitic rock that exhibits a very distinctive texture defined by relatively large rounded feldspar grains. The youngest Precambrian rock is a relatively smaller, apparently irregularly distributed coarse-to very coarse-pegmatite that consists primarily of feldspar and quartz exhibiting a very distinctive granophyric texture. The distribution of the veins systems appear to be very closely associated with the contact between the supracrustal and granitic rocks and locally effected by the contact of the pegmatite when present. Interesting to note that the apparent core areas of the pegmatite consist predominantly of quartz and have previously been mistakenly consisted part of the much younger Laramide-age mineralized quartz veins (Photograph 1).





# Laramide Intrusive Rocks

The Laramide intrusive rocks consist primarily of a monzonite plutonic unit (Photograph 2) and relatively smaller and a younger suite of dyke-like porphyry intrusive rocks (Photograph 3). The monzonite is typically a uniform, medium-grained rock and can be readily distinguished from the Precambrian-age granites and occur primarily within the Mohave Standard claim group. The porphyries are typically characterized by a fine-grained groundmass with fine- to medium-grained feldspar and/or quartz phenocrysts. The porphyries appear to be the youngest igneous phase within the Project area, but are older than the quartz veining. The porphyries occur primarily within or adjacent to multi-phase vein systems were they can be weakly to intensely altered within the New Enterprise claim group.







#### Structure

Structures have a twofold impact on the geology; displacement of rock types and acting as a conduit for metal-bearing fluids. Rock unit displacement can be minor to significant (millimetres to kilometres), horizontally and/or vertically. Identifying structures and estimating their displacements are crucial to determining where prospective host rocks and possible metal-bearing conduits could be present within the Project area. Relative timing relationships of the structures are also essential so that it can be determined whether a fault zone was active previous, during, or after the formation of the mineral deposit. In addition, the intersection points of some structures can be pivotal in targeting locations with the maximum fluid flow and potential for wider and higher concentrations of precious and base metal mineralization. And, more local zones of weakness between lithological contacts often develop into structures that could be focal points for younger intrusive rocks and accompanying mineralization.

Based on the work completed to-date, there are at least two property scale structures identified within the Project area that are referred to as the Hualapai Fault and the McGarry's Wash lineament (Figure 7). The Hualapai Fault is a north south, post mineralization fault that is considered to be a relatively lowangle normal slip thrust fault dipping to the east and related to the development of the Basin and Range extensional event (Morgan, et. al., 2009). The McGarry's Wash lineament does not appear to be referenced in the documents reviewed by the authors, but during their field visit it was recognized as a well-developed east-west lineament coincidental with a change in dominant rock-types from Laramide intrusive rocks to the south, to Precambrian rocks predominantly in the north.

In addition to property scale structures, a localized structure appears to be present at the contact between the Precambrian supracrustal and granitic rocks coincidental with the Central Vein System. Competency contrasts at lithological contacts between different Precambrian rocks is considered to



control the distribution of mineralization and Laramide intrusive rocks within the Mineral Park deposit and area (Wilkinson, 1981). Interestingly, the north south aligned vein systems within the New Enterprise claim group is coincidental with the north-south alignment of the main Laramide monzonitic intrusive unit (Figure 7). This may suggest that north-south structures could be important primary controls for the vein systems, porphyry intrusions and the intrusion of the main monzonitic pluton.

#### Alteration

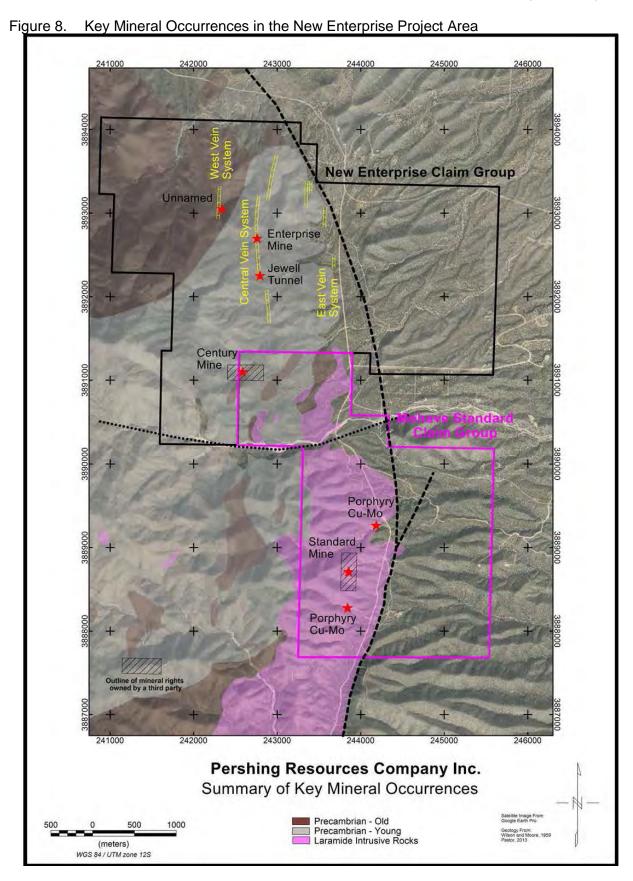
Identifying and understanding the spatial distribution of alteration is also a crucial component of porphyry-style mineralization. Based on the work completed by Vuich (1974) covering mostly the southern part of the Project area, a porphyry-style alteration pattern of potassic, sericitic, argillic and propylitic alteration is present and zoned outward from the vein systems. He also notes that the proportion of gold and copper correlates with the relative intensity of the alteration and that the alteration occurred after the intrusion of the porphyries and before the development of quartz veining.

Systematic work delineating the distribution of the alteration related to a porphyry-style mineralization in relationship to the vein systems has not been completed within the New Enterprise Project area. When this work is completed, it is important to take into consideration that the vein systems are hosted within previously metamorphosed Precambrian rocks. Potassic alteration within porphyry-style mineralization can occur in the form of biotite. Biotite, a common Precambrian metamorphic mineral, was noted in the Precambrian rocks by the authors during their fieldwork but no consideration appears to have been given by previous workers that it may be indicative of porphyry-style potassic alteration. Early pervasive biotite alteration of hornblende in the Precambrian rocks is noted adjacent to the Mineral Park deposit (Wilkinson, 1981).

### Mineralization

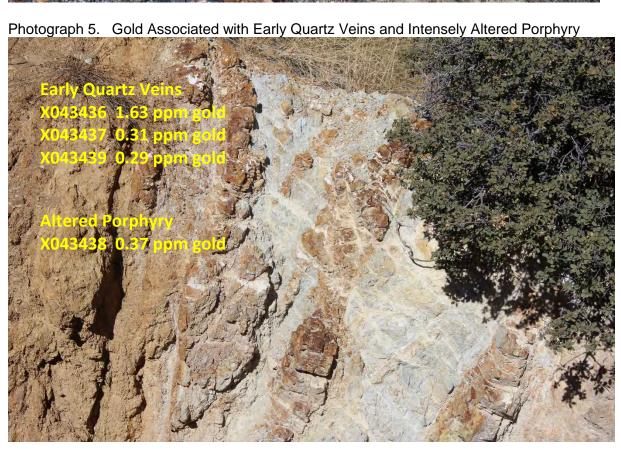
Types of precious and base metal mineral occurrences within the New Enterprise Project can be generally divided into gold-copper porphyry intrusive rocks, early quartz veining, late quartz veining and porphyry copper-molybdenum (Table 4). The gold-copper porphyry intrusive rocks, early quartz veining, and late quartz veins form a conjugate relationship within vein systems up to 30 metres wide and at least two kilometres long. These occurrences have been recently generally grouped into the West, Central, and East, north-south trending vein systems (Figure 8) and host the vast majority of mineral occurrences within the New Enterprise mining claim group. None of these occurrences have been drill tested. The other type of significant base metal mineralization previously described in the Mohave Standard claim group is indicative of porphyry copper-molybdenum mineralization (Figure 8). This type of mineralization can be readily observed in bedrock outcroppings south and northeast of the Standard mine within the Mohave Standard mining claim group. Drilling completed by A&M Minerals in 2013 reported up to 187.5 metres of 0.07% copper and 0.03% molybdenum of porphyry copper-molybdenum mineralization within the Mohave Standard mining claim group.



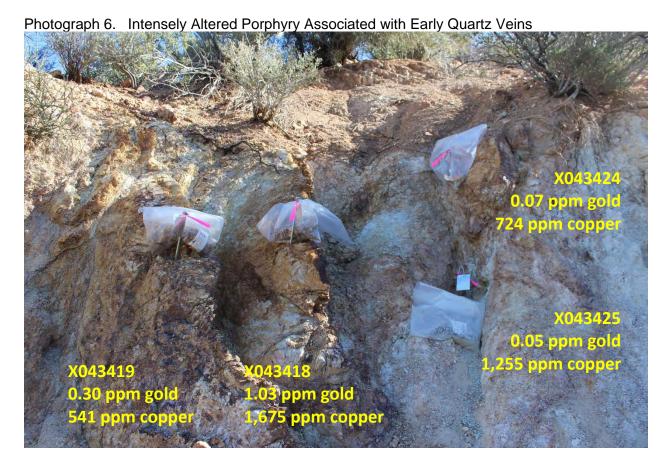

Table 4. List of Key Mineral Occurrences

| Mineralization Type   | Occurrence          | UTM_E  | UTM_N   | Mineralization     |
|-----------------------|---------------------|--------|---------|--------------------|
| Vein System - Central | Enterprise Mine     | 242744 | 3892703 | Au, Ag, Cu, Pb, Zn |
| Vein System - Central | Jewell Tunnel       | 242882 | 3892087 | Au, Ag, Cu, Pb, Zn |
| Vein System - Central | South Cut           | 242883 | 3891911 | Au, Ag, Cu, Pb, Zn |
| Vein System - Central | North Cut           | 242774 | 3893110 | Au, Ag, Cu, Pb     |
| Vein System - Central | Far North           | 242950 | 3893538 | Au, Ag, Cu, Pb     |
|                       |                     |        |         |                    |
| Vein System - West    | South Pit           | 242277 | 3893040 | Au, Ag, Cu, Pb, Zn |
| Vein System - West    | Middle Pit          | 242324 | 3893151 | Au, Ag, Cu, Pb, Zn |
| Vein System - West    | North Pit           | 242307 | 3893211 | Au, Ag, Cu, Pb, Zn |
|                       |                     |        |         |                    |
| Vein System - East    | North Quartz Veins  | 243398 | 3893316 | Au, Ag             |
|                       |                     |        |         |                    |
| Porphyry Cu-Mo        | NE of Standard Mine | 244226 | 3889308 | Cu, Mo             |
| Porphyry Cu-Mo        | S of Standard Mine  | 243865 | 3888306 | Cu, Mo             |
|                       |                     |        |         |                    |

# Porphyry Gold-Copper and Early Quartz Veining Occurrences


As part of the recent sampling program a range of weakly to intensely altered porphyry rocks with associated relatively early, smaller (less than 0.5 metre), quartz veins were sampled within the New Enterprise mining claim group (Photographs 4 and 5). Previous work had not identified the porphyry or early quartz veining as a possible source for gold and copper mineralization. Grab sample analytical results of the porphyries and associated quartz veins are presented in Item: 9 Exploration. The porphyritic rocks appear to represent a suite of north-south trending intrusive dykes that vary in timing relationships, texture and degree of alteration. Weakly altered varieties tend to be adjacent or associated with relatively narrower portions of a particular vein system. Typically, when weakly altered, they are fine-grained, intermediate to felsic composition with varying proportion and size of feldspar and quartz phenocrysts. Variable proportions of fine-grained ferromagnesium phenocrysts were noted. When altered, the porphyries can exhibit relic textures and are fine- to very fine-grained and vary in colour from brown, to yellow-brown to white. The quartz veins hosted within the porphyries tend to be narrow, discontinuous and irregularly oriented. The altered porphyry rocks are volumetrically the most significant component of the vein systems when they are more than 5 metres wide and a possible source of low-grade gold and copper mineralization surrounding the high-grade silver, lead, and zinc quartz veins within the vein systems.















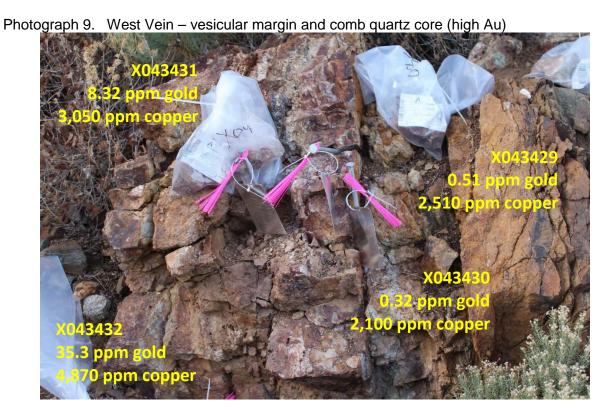

# Late Fracture and/or Fault Controlled Quartz Veining

Multi-phase and -texture quartz veining is present across and along the vein systems within the New Enterprise claim group. It does not appear that any of the previously documented work within the New Enterprise mining claim group has delineated the different stages or generations of quartz veining throughout the property. In the adjacent mining claim surrounded by the Mohave Standard mining group, three different generations of quartz veins were mined from within the Standard Mine which is hosted within the Laramide-age monzonite intrusive. Each of the three generations have a different strike, dip and proportion of precious and base metals. The quartz veins within the New Enterprise mining claims are hosted within Precambrian-age rocks and exhibit variable strikes, dip and proportion of precious and base metals. The following describes the quartz veins that tend to be last group of quartz veins that strike predominantly north-south, have a near vertical dip and exhibit textures that are indicative of episodic influx of hydrothermal fluids into fault and/or fracture zones.

Generally, the strongly fault and/or fracture controlled late quartz veins range in size from a about 0.5 metres up to 3 metres wide and typically occur as planar to discontinuous, irregular shaped units that can be readily traced for 100's of metres along intermittent outcrops (Photo 6). They are present in each of the vein systems and typically form higher ridges when associated with vein systems that have a low to absent proportion of porphyry intrusive rocks. They were consistently observed cutting altered porphyry intrusions (Photograph 7) and are associated themselves with weak to moderate variable proportions of limonite, hematite, and sericite alteration. When present together within a single vein, early crystallizing outer margins can be generally characterized as massive/vesicular, followed by



brecciated and then cores of laminar and/or comb quartz textured types (Photograph 8, 9, and 10). Apart from tendencies toward certain precious and base metal association with the different textures, there does not appear an obvious spatial or timing zonation that can easily discriminate the different types of quartz veins. One of the obvious tendencies that historic artisanal mining operations targeted was the association of massive sulphides consisting primarily of galena, sphalerite, and pyrite with associated high-grade silver, lead and zinc mineralization within cavities of comb textured quartz veins. These comb-textured cavities were observed up to 1 metre wide and up to 20 metres long (Photograph 11). Drill core intersections of unweathered and undisturbed quartz veins will greatly improve the characterization of the quartz veining and their size and width distribution within the vein systems.


Photograph 7. Central Vein System – Far North: Late Quartz Vein High relief, tabular form that can be easily tracked for 100's of metres in intermittent outcrop.

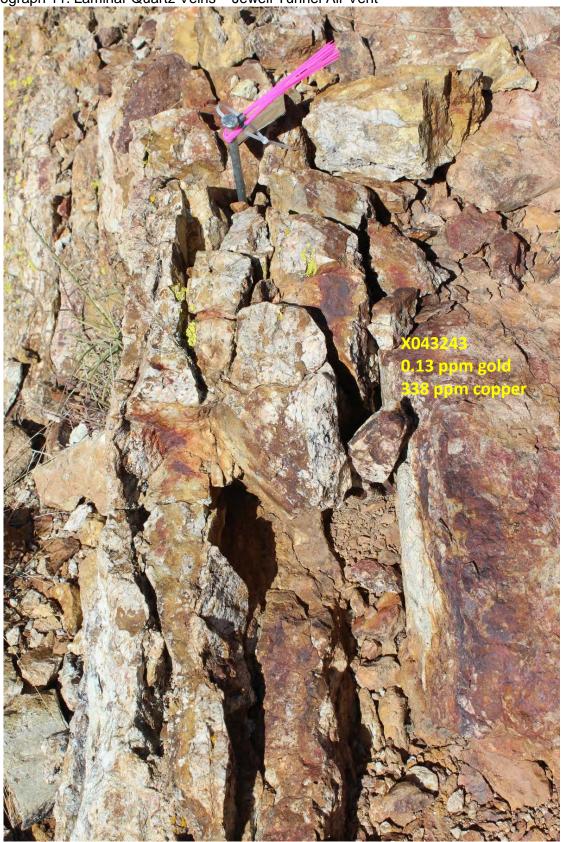




Photograph 8. South Cut vein margin








Photograph 10. Late Quartz Vein: Brecciation of Quartz and Quartz Matrix



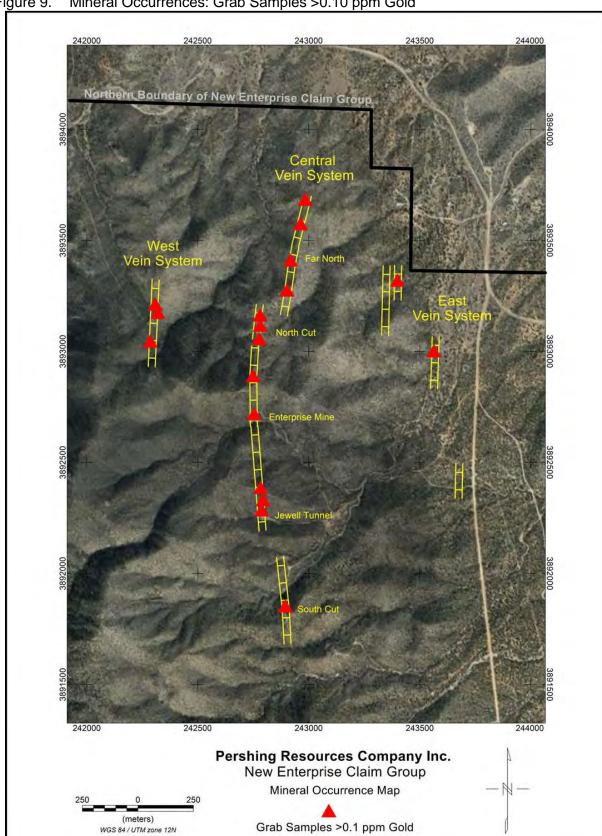


Photograph 11. Laminar Quartz Veins – Jewell Tunnel Air Vent

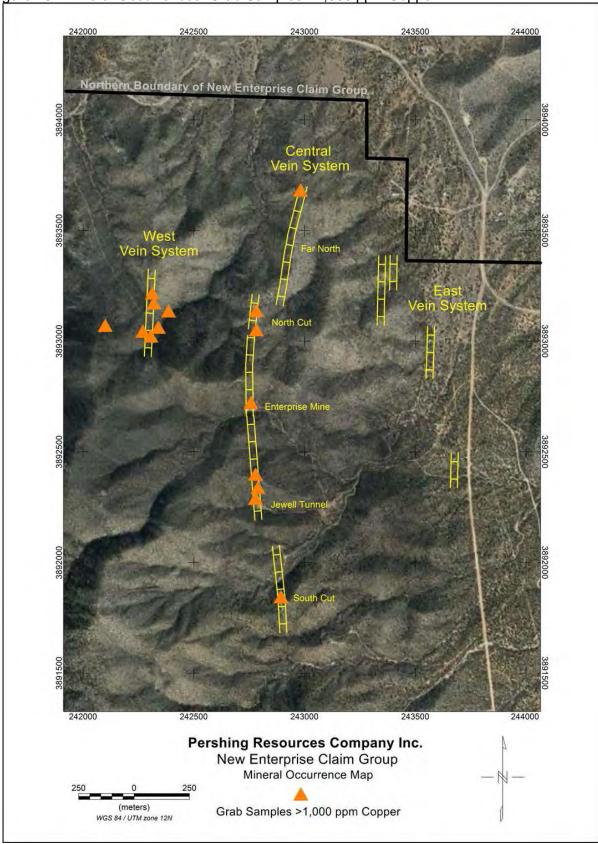




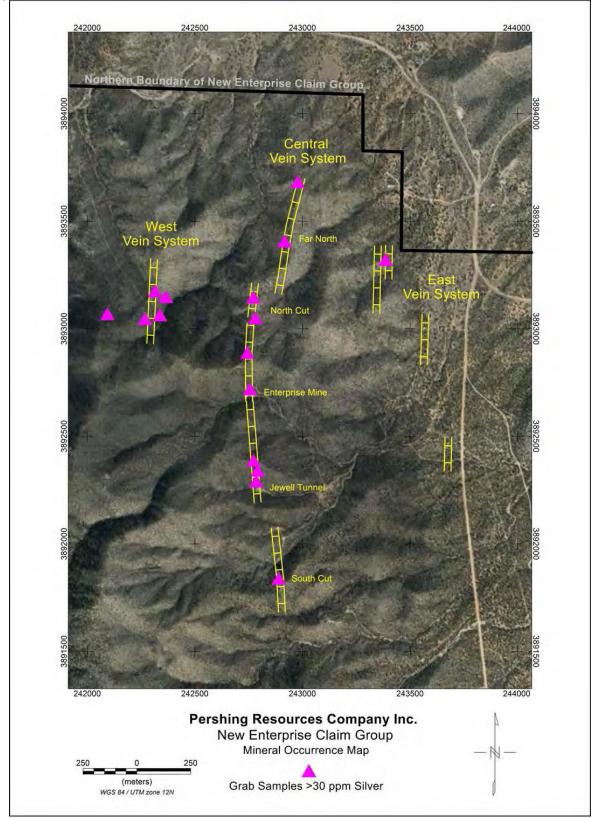
Photograph 12. Comb Quartz and Laminar Quartz Veins: Jewell Tunnel





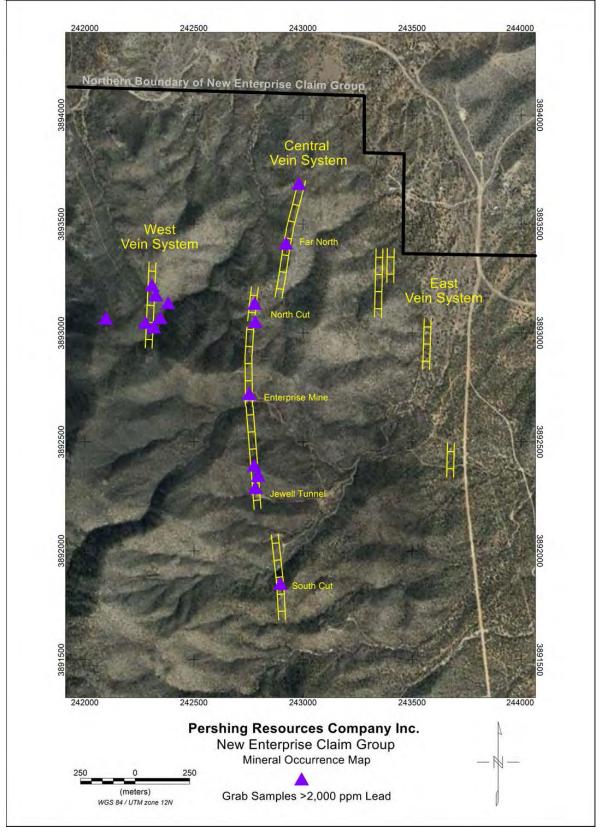


# Mineralized Vein Systems

Significant gold, copper, silver, lead, and zinc mineral occurrences are present within the Central and West vein systems whereas only minor gold and silver occurrences are present in the East Vein System (Figure 9 to 13). Mineral occurrences are present intermittently along each of the vein systems except for the absence of zinc in the northern portion of the Central Vein System (Figure 13).

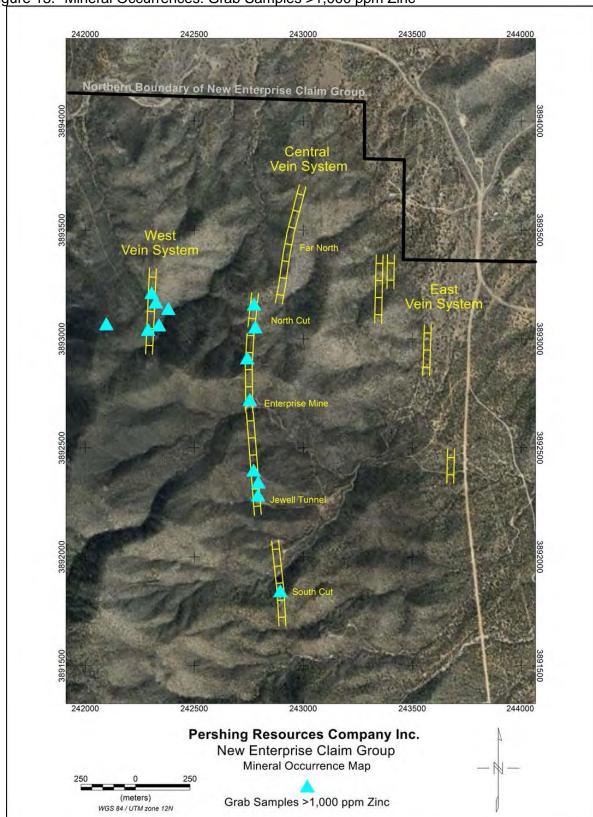








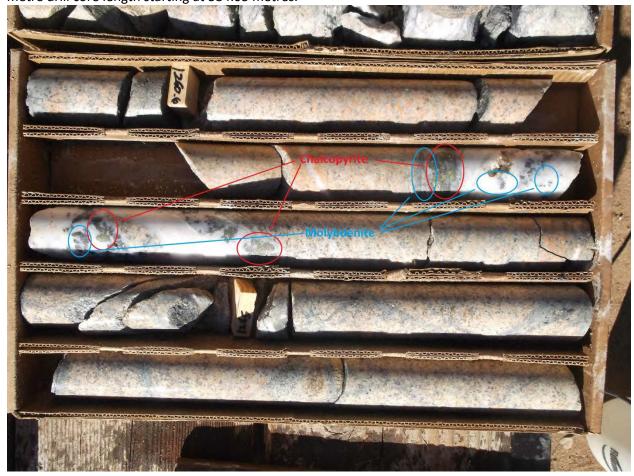














# Porphyry Copper-Molybdenum Occurrences

In 2013, bedrock outcroppings of porphyry copper-molybdenum mineralization within the Mohave Standard mining claim group was drill tested by A&M Minerals (Figure 8). They describe copper mineralization to occur primarily as fine-grained disseminations within its host monzonitic rocks and within quartz veins and stringers (Photograph 12). Molybdenum mineralization was described as occurring along edges of veins and stringers and rarely as visible disseminations within the country rock monzonite. Croteau (2014) noted that more than 95 percent of the veins, stringers and fractures observed in drill core were associated with potassic and sericite alteration.

Photograph 13. Mohave Standard Property Porphyry Copper-Molybdenum Example of porphyry copper-molybdenum mineralization as reported by Croteau, 2013. Copper-molybdenum-bearing quartz veins hosted within potassic altered quartz monzonite. Reported from DDH-03 as 0.25 ppm gold, 20.6 ppm silver, 815 ppm copper, and 229 ppm molybdenum along three metre drill core length starting at 384.05 metres.





# Item 8: Deposit Types

A porphyry deposit is a complex body of polymetallic mineralization. On a basic level a porphyry deposit model involves the intrusion of a magmatic body (i.e. pluton or duke) into cooler country rock. This emplacement results in fracturing and brecciation of the host rock generating fractures and crackle zones in the carapace above the intrusion. Hydrothermal fluids generated by the pluton, that are typically metal-rich and highly saline, escape upward and outward along the generated fractures. The resultant geometry of the system is a wide spread set of fractures, veins and breccia zones that become mineralized after successive events of boiling due to sealing, re-fracturing and resealing of the fractures (McMillan and Panteleyev, 1988).

### Laramide Copper-Molybdenum Porphyry

The porphyry copper deposits of the American Southwest (Figure 14) are termed Laramide copper porphyries. Located in the Basin and Range province and Central Mountain physiographic regions in Arizona and contiguous areas, Laramide porphyries are associated with Laramide aged intrusions (50-80 Ma) and magmatic rocks (i.e. Morenci Assemblage) (Keith and Wilt, 1986). This has given rise to the term Laramide porphyry province. The basement and wall rocks of the Laramide porphyry province is Proterozoic crust overlain by several kilometers of Paleozoic and Mesozoic sediments and volcanics (Lang and Titley, 1998). Laramide copper porphyries consist of large, disseminated, mesothermal, annular zones of Cu-Mo mineralization in, or adjacent to, porphyritic, epizonal, metaluminous calcalkaline stocks that are typically granodiorite, granite or granite aplite in composition (i.e. Keith and Wilt, 1986; Lang and Titley, 1998; Titley and Beane, 1981 etc.). Hydrothermal alteration and mineralization are controlled by and related to abundantly fractured host rocks. Titley (1993) recognized that many single porphyry-centered deposits belong to clusters of plutons that collectively composed ore districts. He noted that these large base metal districts can be viewed as manifestations of very large (50km<sub>2</sub>) zoned hydrothermal systems. Examples of porphyry copper deposits that are part of these Laramide ore districts include Morenci, Ray, Silver Bell, Bagdad and Mineral Park (Lowell 1974). The New Enterprise Project lies within the northwest-southeast striking Laramide porphyry copper province that includes Morenci, Silver Bell, Ray and Bagdad to the southeast and Mineral Park to the northwest. Mineral Park is approximately 20 miles to the northwest and the Bagdad Mine is approximately 45 miles to the southeast, of the New Enterprise Project.

At Mineral Park, all Precambrian host rocks have been metamorphosed to upper greenschist/amphibolite facies. No record of events between the Proterozoic or Laramide has been preserved (Lang and Eastoe, 1986). The mineralization is centered in and around highly fractured and altered Late Cretaceous stocks (Wilkinson et al., 1982; Land and Eastoe, 1988). Similar to Morenci, Mineral Park mineralization occurs in the lithocap environment of a progenitor intrusion (Lang and Eastoe, 1988; Melchiorre and Enders, 2003). Alteration and mineralization exhibits zoning outwards from the Cu-Mo rich core to succeeding zones of Zn-Pb-Ag-Au and Mg-Mn (Keith and Wilt, 1986). Lang and Eastoe (1986) noted that mineralized districts of distinct mineralization and alteration are separated by barren regions and are likely related to fold-intrusive contact intersections. Such intersections could suggest enhanced structural permeability exerted by intruding stocks on pre-existing structural pathways. Migration of mineralized fluids along structurally favourable pathways could be sourced from exposed Laramide stocks such as Ithaca Peak at Mineral Park or deeper level stocks that are not exposed (Lang and Eastoe, 1986).



Figure 14. Southwest Porphyry Province (Note: Mineral Park referred to as Ithaca Peak)



The erosional depth at New Enterprise is undetermined. As Lowell (1974) points out, interpreting the depth of erosion of a porphyry can be attempted by comparing alteration and mineral assemblages of exposed at present ground surface with assumed model of vertical zonation.

# Veining Associated with the Porphyry Cu-Mo Model

In the early seventies, Rehrig and Deidrick conducted a structural investigation and noted that NE- to Etrending structures in the Laramide porphyry province were preferentially mineralized (Rehrig and Deidrick, 1976). Fracture patterns suggest porphyry style mineralization was contemporaneous with igneous plutonism and that the orientation of the early vein sets were controlled by stress patterns related to the stock intrusion yielding a northeast-southwest pattern that prevailed during the main Laramide mineralization phase.



In the Chloride and Mineral Park mining districts, Lang and Eastoe (1986) point out that Cu-Mo mineralization occurs in a system of numerous, well-exposed, peripheral polymetallic base and precious metal veins within or near Laramide granitoid stocks at the center of an elongate zone of polymetallic quartz veins. At Mineral Park copper-molybdenum mineralization occurs within the core area whereas peripheral veining includes large polymetallic quartz-sulphide veins, carbonate replacement ores, and ore led-zinc skarn deposits (Land and Eastoe, 1986). All vein stages occur within the copper-porphyry deposit proper but only the polymetallic veins occur outside of it. All though high copper production occurred in the Cu-Mo veins, peripheral ores have contributed significantly to the Laramide porphyries production.

# Gold-rich Porphyry Deposits

Exploration for a gold-rich porphyry-style deposit type does not appear to have been previously considered for the New Enterprise Project area. Exploration for gold-rich porphyries is fundamentally the same as that for porphyry copper-molybdenum deposit types. The most significant difference is the upward zonation and overprinting of mineralization spanning the life of the porphyry system located directly over the source porphyry and the general lack of economically significant zones of supergene copper enrichment (Sillitoe, 2000). In comparison, a porphyry copper-molybdenum deposit type would display a concentrically outward zonation as described for the Mineral Park porphyry coppermolybdenum deposit; copper-molybdenum core, surrounded by lead-zinc veining which in-turn is surrounded by an outer periphery of gold-bearing veins. Within a gold-rich porphyry deposit type, each mineralization event could occur within the same vein system at relatively the same elevation, directly over the source porphyry. As a result, each metal-bearing event emanating from the source porphyry passes upward through overlying structures continually as the system cools, producing a complex overprinting of mineralization and a "telescopic-like" zonation pattern within the structure. A more complex vertically zoned overprinting of potassic, sericite, argillite and propylitic alteration typical of a porphyry-style system also occurs in association with the vertically zoned structures. In addition, a goldrich porphyry deposit type has a suite of elements that are commonly considered "pathfinder" elements (gold, bismuth, tellurium, and arsenic) that are not typically associated with porphyry-style coppermolybdenum deposits.



# Item 9: Exploration

The New Enterprise Project is in the early stages of exploration with a historic database comprised of assay analyses of a limited number of grab samples. Comprehensive geological mapping, geophysical surveys, diamond drilling and mineral characterization have not been completed within the New Enterprise claims. A limited amount of work has been completed and reported for the Mohave Standard claims and summarized in this technical report. Access to the vast majority of the Project was readily achieved using a side-by-side ATV along roads and trails.

Upon completion of an orientation tour of the New Enterprise and Mohave Standard mining claims lead by Pershing Resources (Photograph 13), the authors embarked on cursory examination of the geology and mineral occurrences throughout the mining claims staked by Pershing Resources at the time. Off-trail traverses were also completed through areas without ATV access to ensure a full range of bedrock types and characteristics were observed prior to initiating sampling. Host rock variations, types of veining, effects of width and continuity of the veins with the relative proportions of precious and base metals, and the style and distribution of the mineralization, were used as the basis for site selection and individual sample collection.

Photograph 14. Rock Examination within the Jewell Tunnel





Once the range of known mineral and textural characteristics of the mineral occurrences and their host rocks were observed and summarized, grab samples of surface bedrock outcroppings (except for four mine dump material and five underground samples) were collected from specific locations indicative of the noted types and variants. All 106 samples collected were from locations with previous historical trenching, excavating, or mining activities and are indicative of oxidized samples that have been exposed to desert weathering conditions. For each sample collection site, a GPS co-ordinate was acquired with a reported accuracy of at least +3 metres with a Garmin 64S device equipped with a high-sensitivity GPS and GLONASS receiver and a quad helix antenna by averaging readings until an acceptable accuracy was obtained. Brief notes describing the type, texture and minerals identified were completed for each of the samples (Appendix 1). Samples were then grouped into general rock types, textures and mineralogy. These groupings were then integrated with the analytical data to determine the petrogenetic and metallogenic characteristics of the samples collected. The analytical results were then tabulated and characterized based on the relative abundance and comparison of key elemental data. From this set of compiled observations and analytical data the known mineral occurrences were then characterized and compared to known deposit model types for discussion within this technical report.

The 106 grab samples collected during the current work (Figure 15) were augmented by 36 grab samples collected by Pershing Resources in 2016 and 2017 and the drill core data collected and reported by Croteau, 2014, for A&M Minerals. All analyses used for the discussion and interpretation of samples utilized to characterize the mineralization within the New Enterprise Project area were acquired using standard best industry practices analytical methods and procedures.

Of the total 106 grab samples collected (Figure 15) and analyzed as part of the recent exploration fieldwork, 97 were collected from surface bedrock exposures, four were collected from the Enterprise mine dump pile and five were retrieved from within the Jewel tunnel. The different rock types collected were 44 samples of porphyry (17) or altered porphyry (27), 15 characterized as early quartz veining, 40 characterized as late quartz veining and seven country rock samples. Most of the samples came from occurrences within the Central Vein System (76) with lesser coming from the East Vein System (16), West Vein System (11) and an alteration zone (3) near the south end of the New Enterprise mining claims.







# Mineralized Rock Types within the Vein Systems

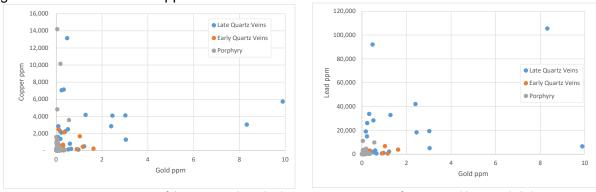
Rock types sampled during the recent fieldwork can be generally divided into porphyritic intrusive rocks, early quartz veins, late fault and/or fracture controlled quartz veins (referred to below as "late quartz veins") and host rocks (see Item 7: Geological Setting and Mineralization for descriptions). A brief illustration of significant geochemical characteristics is outlined below (Figure 16 to 25) followed by summary analysis tables for each of the rock types sampled (Table 5, 6, 7, and 8). The host rocks are simply presented in Table form and not included in the plots (Table 8). Note: all plots that include gold do not include the 35.3 ppm gold analysis from the West Vein System because of its impact on the scale. The relevant values are noted along the bottom of the plots.

As expected, the Late Quartz Veins dominate the high values of gold, silver, and lead (Figures 16b and 17a), but not for copper and zinc (Figures 16a and 17b). The trend toward relatively higher copper values is defined by both the Late Quartz Veins and the altered Porphyries and to some degree, with the Early Quartz Veins in the case of zinc (Figure 17b).

Together, all three rock types define a trend, albeit a bit scattered, of increasing silver, tellurium and bismuth with increasing gold (Figure 17a and 18).

A fairly well developed bimodal distribution is outlined for copper, zinc, manganese and molybdenum in relationship to gold (Figure 16a, 17b, and 19). In the case of copper, the bimodal trends are defined primarily by the Late Quartz Veins, and to some degree the Early Quartz Veins, where increasing gold values are inversely proportion to increasing copper values. The altered Porphyries follow the trend of increasing copper with no correlative increase in gold values. In the case of the other three elements, zinc, manganese, molybdenum, all three rock types delineate a bimodal distribution inversely proportional to the gold values. In the case for increasing manganese with no significant increase in the gold value, it is primarily defined by samples collected from the East Vein System.

In relationship to copper, lead and silver tend to increase within increasing copper primarily within the Late Quartz Veins (Figure 20). Except for a couple of anomalous zinc values, copper values increase with no direct correlative increase in the zinc values (Figure 21a). In the case of manganese (Figure 21b), there is a bimodal distribution with rocks from the East Vein System outlining an increase in manganese with no significant increase in copper, and the remainder of the rock types outlining an increasing copper with no significant increase in manganese. There also appears to be a poorly defined bimodal distribution between molybdenum and copper (Figure 22a). The Early and Late Quartz veins outline a trend of increasing molybdenum without a significant increase in copper, whereas only three rock types outline a trend of increasing copper with very little increase in molybdenum.


In the case of comparing lead and zinc ratios to gold and silver (Figure 23), there is quite a bit of scatter, but there does appear to be a poorly defined bimodal trend, one trend with a relatively higher lead/zinc ratio that includes all the rock types and another with relatively lower lead/zinc ratio that is outlined by only the Late and Early Quartz Veins.

A well-developed bimodal pattern is illustrated between gold/copper ratios versus zinc, lead, and silver (Figure 24 and 25). Much of the bimodal trend is dependent on the lead and silver values in the Late Quartz Veins but there does appear to also be a bimodal trend within the Porphyry and Early Quartz Veins.



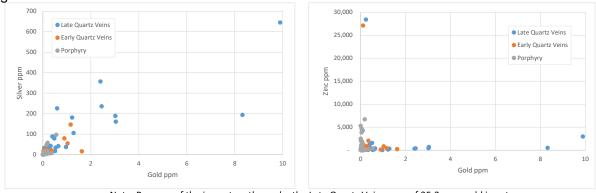
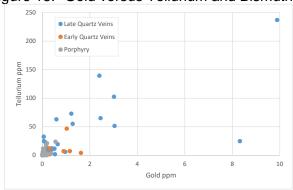
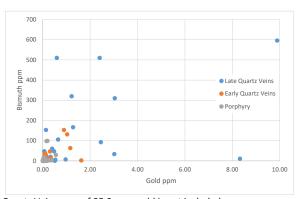

The rock type division outlined in Figures 16 to 25, is the first time a systematic delineation of the mineralized units that make-up the vein systems within the New Enterprise mining claims has been undertaken. It clearly delineates multiple events of mineralization within the vein systems beginning with the intrusion of Porphyry and its subsequent weak to intense alteration, followed by a suite of Early Quartz Veining that is considered likely to be coincidental with, and after the mineralized alteration event, followed by a fault and/or fracture controlled Late Quartz Veining event. The delineation and correlation of the rock types and the precious and base metal mineralization within the vein systems, in some cases only metres apart from one another, is considered to demonstrate a close spatial and chemical correlation with a single underlying source for each event. Further compilation and analysis will improve the characterization of the rock types and vein systems and their relationships to a porphyry-style mineralization system

Figure 16. Gold versus Copper and Lead



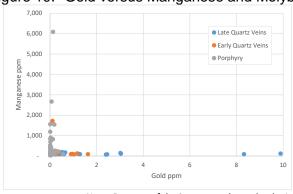
Note: Because of the impact on the scale, the Late Quartz Vein assay of 35.3 ppm gold is not included in the plot. It is present at the far right of the plot with 4,870 ppm copper and 50,500 ppm lead.

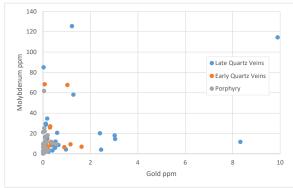

Figure 17. Gold versus Silver and Zinc




Note: Because of the impact on the scale, the Late Quartz Vein assay of 35.3 ppm gold is not included in the plot. It is present at the far right of the plot with 119 ppm silver and 839 ppm zinc.

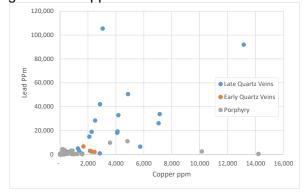



Figure 18. Gold versus Tellurium and Bismuth






Note: Because of the impact on the scale, the Late Quartz Vein assay of 35.3 ppm gold is not included in the plot. It is present at the far right of the plot with 8 ppm Tellurium and 43 ppm bismuth.


Figure 19. Gold versus Manganese and Molybdenum





Note: Because of the impact on the scale, the Late Quartz Vein assay of 35.3 ppm gold is not included in the plot. It is present at the far right of the plot with 85 ppm manganese and 13 ppm molybdenum.

Figure 20. Copper versus Lead and Silver



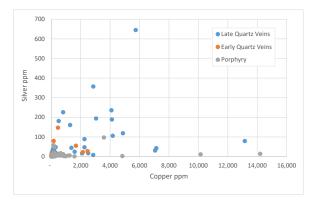
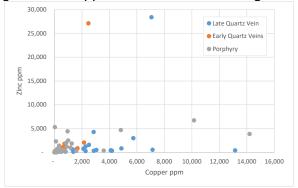






Figure 21. Copper versus Zinc and Manganese



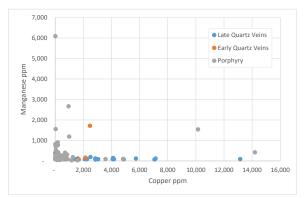
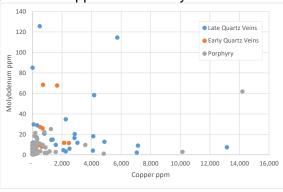




Figure 22. Copper versus Molybdenum and Lead versus Zinc



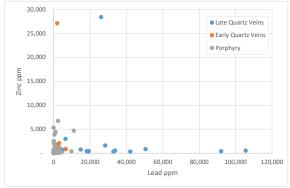
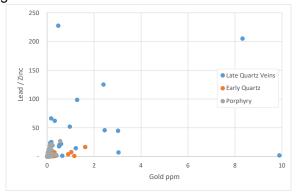
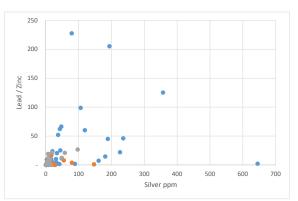
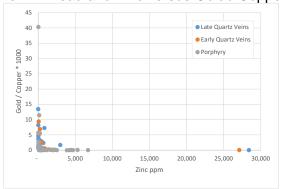





Figure 23. Gold and Silver versus Lead / Zinc






Note: Because of the impact on the scale, the Late Quartz Vein assay of 35.3 ppm gold is not included in the plot. It is present at the far right of the plot with a  $60.19 \, \text{lead} / \text{zinc}$  ratio.



Figure 24. Lead and Zinc versus Gold / Copper



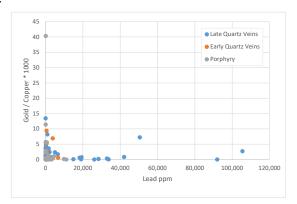



Figure 25. Silver versus Gold / Copper

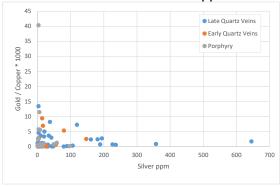



Table 5. Summary Table of Late Quartz Vein Analysis

| Vein    | Location           | Sample  | Au    | Ag  | Cu    | Pb      | Zn     | As    | Bi  | Te  | Мо  |
|---------|--------------------|---------|-------|-----|-------|---------|--------|-------|-----|-----|-----|
| System  |                    | No      | ppm   | ppm | ppm   | ppm     | ppm    | ppm   | ppm | ppm | ppm |
| West    | North Pits         | X043429 | 0.51  | 17  | 2,510 | 28,400  | 1,580  | 47    | 0   | 12  | 6   |
| West    | North Pits         | X043430 | 0.23  | 16  | 2,100 | 14,900  | 765    | 31    | 4   | 2   | 5   |
| West    | North Pits         | X043431 | 8.32  | 194 | 3,050 | 105,500 | 514    | 340   | 11  | 25  | 12  |
| West    | North Pits         | X043432 | 35.30 | 119 | 4,870 | 50,500  | 839    | 283   | 43  | 8   | 13  |
| Central | High Point Gate    | X043204 | 0.12  | 15  | 96    | 524     | 266    | 20    | 9   | 3   | 30  |
| Central | High Point Gate    | X043205 | 0.65  | 42  | 217   | 601     | 387    | 162   | 106 | 20  | 9   |
| Central | Jewell W Tunnel    | X043233 | 0.19  | 48  | 299   | 2,020   | 177    | 421   | 15  | 8   | 4   |
| Central | Jewell Air Vent    | X043242 | 0.09  | 8   | 2,850 | 981     | 4,290  | 188   | 10  | 4   | 16  |
| Central | Jewell Air Vent    | X043243 | 0.13  | 16  | 338   | 3,370   | 325    | 657   | 4   | 7   | 29  |
| Central | Jewell Air Vent    | X043244 | 2.40  | 357 | 2,860 | 42,100  | 336    | 9,620 | 510 | 140 | 20  |
| Central | Jewell Top of Hill | X043245 | 3.02  | 189 | 4,120 | 19,300  | 429    | 2,420 | 34  | 103 | 18  |
| Central | Jewell Top of Hill | X043246 | 0.07  | 25  | 1,590 | 757     | 667    | 2,030 | 44  | 25  | 10  |
| Central | Jewell Top of Hill | X043249 | 0.06  | 31  | 96    | 456     | 45     | 114   | 48  | 33  | 11  |
| Central | Jewell Top of Hill | X043250 | 0.06  | 33  | 185   | 571     | 142    | 98    | 12  | 3   | 11  |
| Central | Jewell Top / Don   | X043256 | 2.45  | 236 | 4,090 | 18,250  | 397    | 1,480 | 93  | 65  | 4   |
| Central | Jewell UG          | X043253 | 0.24  | 31  | 7,060 | 26,100  | 28,400 | 2,070 | 4   | 5   | 2   |
| Central | Enterprise Shaft   | X043210 | 1.28  | 106 | 4,180 | 32,900  | 333    | 2,710 | 167 | 55  | 58  |



| Vein<br>System | Location           | Sample<br>No | Au<br>ppm | Ag<br>ppm | Cu<br>ppm | Pb<br>ppm | Zn<br>ppm | As<br>ppm | Bi<br>ppm | Te<br>ppm | Mo<br>ppm |
|----------------|--------------------|--------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Central        | Enterprise Shaft   | X043217      | 0.53      | 34        | 146       | 1,705     | 83        | 24        | 6         | 2         | 12        |
| Central        | Enterprise Shaft   | X043218      | 0.40      | 89        | 2,260     | 2,380     | 1,220     | 79        | 61        | 12        | 3         |
| Central        | South Cut          | X043414      | 3.04      | 161       | 1,285     | 5,030     | 690       | 120       | 310       | 52        | 15        |
| Central        | South Cut          | X043413      | 0.14      | 20        | 283       | 2,730     | 115       | 109       | 153       | 23        | 17        |
| Central        | South Cut          | X043415      | 9.89      | 645       | 5,740     | 6,580     | 2,980     | 299       | 596       | 237       | 115       |
| Central        | North Cut          | X043445      | 0.18      | 44        | 1,370     | 3,030     | 120       | 10        | 4         | 7         | 15        |
| Central        | North Cut          | X043446      | 0.33      | 43        | 7,140     | 33,800    | 543       | 235       | 20        | 10        | 9         |
| Central        | North Cut          | X043448      | 0.97      | 38        | 118       | 989       | 19        | 20        | 7         | 6         | 4         |
| Central        | North Cut          | X043450      | 0.60      | 226       | 810       | 3,150     | 143       | 489       | 510       | 63        | 21        |
| Central        | North Cut          | X043447      | 0.48      | 79        | 13,150    | 92,000    | 404       | 250       | 47        | 11        | 7         |
| Central        | Far North          | X043407      | 0.18      | 47        | 2,260     | 19,000    | 286       | 11        | 18        | 14        | 35        |
| Central        | Far North          | X043408      | 0.20      | 21        | 40        | 254       | 54        | 1         | 1         | 3         | 3         |
| Central        | Far North          | X043409      | 1.22      | 181       | 504       | 2,160     | 148       | 115       | 320       | 73        | 126       |
| Central        | Far North          | X043410      | 0.35      | 20        | 105       | 296       | 102       | 4         | 3         | 7         | 9         |
| East           | North Quartz Veins | X043222      | 0.06      | 2         | 22        | 248       | 231       | 10        | 2         | 1         | 7         |
| East           | North Quartz Veins | X043224      | 0.05      | 3         | 75        | 162       | 117       | 6         | 1         | 1         | 6         |
| East           | North Quartz Veins | X043226      | 0.01      | 1         | 10        | 21        | 45        | 1         | 1         | 2         | 1         |
| East           | North Quartz Veins | X043227      | 0.08      | 3         | 18        | 195       | 21        | 7         | 2         | 2         | 12        |
| East           | North Quartz Veins | X043229      | 0.04      | 10        | 12        | 15        | 11        | 1         | 0         | 3         | 3         |
| East           | North Quartz Veins | X043230      | 0.13      | 3         | 10        | 13        | 6         | 3         | 1         | 1         | 3         |
| East           | Pit 2              | X043404      | 0.02      | 0         | 21        | 20        | 62        | 50        | 3         | 6         | 85        |
| East           | Pit 2              | X043405      | 0.01      | 1         | 13        | 13        | 12        | 6         | 3         | 2         | 10        |
| East           | Pit 2              | X043406      | 0.05      | 3         | 30        | 45        | 27        | 4         | 8         | 6         | 6         |

Table 6. Summary Table of Early Quartz Vein Analyses

| Vein<br>System | Location          | Sample<br>No | Au<br>ppm | Ag<br>ppm | Cu<br>ppm | Pb<br>ppm | Zn<br>ppm | As<br>ppm | Bi<br>ppm | Te<br>ppm | Mo<br>ppm |
|----------------|-------------------|--------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| West           | Pit West of Shaft | X043436      | 1.63      | 16        | 235       | 3,850     | 232       | 32        | 2         | 4         | 7         |
| West           | Pit West of Shaft | X043437      | 0.31      | 14        | 33        | 530       | 70        | 12        | 5         | 2         | 9         |
| West           | Pit West of Shaft | X043439      | 0.29      | 7         | 694       | 1,030     | 868       | 42        | 5         | 3         | 26        |
| Central        | Enterprise Shaft  | X043206      | 0.06      | 6         | 133       | 106       | 119       | 71        | 4         | 2         | 3         |
| Central        | Enterprise Shaft  | X043214      | 0.90      | 80        | 169       | 591       | 145       | 80        | 153       | 7         | 7         |
| Central        | Enterprise Shaft  | X043215      | 1.16      | 147       | 455       | 494       | 431       | 49        | 63        | 7         | 9         |
| Central        | Enterprise Shaft  | X043220      | 0.11      | 4         | 39        | 748       | 103       | 8         | 3         | 1         | 10        |
| Central        | Enterprise Shaft  | X043221      | 0.11      | 28        | 2,470     | 2,000     | 27,100    | 281       | 36        | 5         | 12        |
| Central        | Jewell Tunnel     | X043238      | 0.19      | 12        | 269       | 656       | 255       | 38        | 6         | 3         | 6         |
| Central        | South Cut         | X043418      | 1.03      | 55        | 1,675     | 6,710     | 845       | 963       | 132       | 47        | 68        |
| Central        | South Cut         | X043419      | 0.30      | 10        | 541       | 741       | 761       | 140       | 47        | 12        | 27        |
| Central        | South Cut         | X043424      | 0.07      | 7         | 724       | 2,220     | 1,810     | 245       | 31        | 8         | 68        |



| Vein<br>System | Location  | Sample<br>No | Au<br>ppm | Ag<br>ppm | Cu<br>ppm | Pb<br>ppm | Zn<br>ppm | As<br>ppm | Bi<br>ppm | Te<br>ppm | Mo<br>ppm |
|----------------|-----------|--------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Central        | South Cut | X043420      | 0.35      | 22        | 2,150     | 3,000     | 2,070     | 184       | 15        | 3         | 12        |
| Central        | South Cut | X043421      | 0.13      | 16        | 636       | 1,540     | 1,140     | 96        | 30        | 2         | 8         |
| Central        | North Cut | X043441      | 0.03      | 18        | 110       | 68        | 214       | 4         | 0         | 1         | 2         |

Table 7. Summary Table of Vein System Porphyry Analysis

| Vein<br>System | Location Location  | Sample<br>No | Au<br>ppm | Ag<br>ppm | Cu<br>ppm | Pb<br>ppm | Zn<br>ppm | As<br>ppm | Bi<br>ppm | Te<br>ppm | Mo<br>ppm |
|----------------|--------------------|--------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| West           | N Pits past fence  | X043433      | 0.18      | 11        | 10,150    | 2,470     | 6,720     | 15        | 1         | 0         | 3         |
| West           | N Pits past fence  | X043434      | 0.04      | 2         | 4,830     | 11,100    | 4,690     | 12        | 0         | 0         | 1         |
| West           | N Pits past fence  | X043435      | 0.07      | 2         | 951       | 988       | 4,420     | 11        | 0         | 0         | 2         |
| West           | Pit West of Shaft  | X043438      | 0.37      | 8         | 67        | 677       | 228       | 10        | 3         | 3         | 11        |
| Central        | Enterprise Shaft   | X043219      | 0.03      | 2         | 184       | 57        | 353       | 46        | 1         | 0         | 1         |
| Central        | Enterprise Shaft   | X043207      | 0.08      | 9         | 107       | 1,350     | 104       | 87        | 14        | 4         | 4         |
| Central        | Enterprise Shaft   | X043208      | 0.00      | 1         | 1,580     | 182       | 298       | 6         | 0         | 0         | 3         |
| Central        | Enterprise Shaft   | X043209      | 0.01      | 1         | 152       | 145       | 248       | 18        | 0         | 0         | 2         |
| Central        | Enterprise Shaft   | X043211      | 0.04      | 5         | 890       | 3,280     | 1,200     | 526       | 16        | 11        | 7         |
| Central        | Enterprise Shaft   | X043212      | 0.03      | 5         | 1,170     | 397       | 961       | 29        | 0         | 1         | 3         |
| Central        | Enterprise Shaft   | X043213      | 0.03      | 6         | 349       | 1,330     | 203       | 102       | 1         | 3         | 2         |
| Central        | Enterprise Shaft   | X043216      | 0.07      | 5         | 464       | 441       | 169       | 146       | 3         | 7         | 11        |
| Central        | Jewell UG          | X043251      | 0.02      | 0         | 42        | 28        | 147       | 7         | 0         | 0         | 6         |
| Central        | Jewell UG          | X043252      | 0.01      | 1         | 108       | 56        | 2,310     | 11        | 1         | 1         | 0         |
| Central        | Jewell W Tunnel    | X043234      | 0.04      | 12        | 702       | 948       | 352       | 392       | 3         | 12        | 10        |
| Central        | Jewell Tunnel/Don  | X043254      | 0.04      | 5         | 242       | 819       | 360       | 35        | 2         | 1         | 6         |
| Central        | Jewell Tunnel/Don  | X043255      | 0.07      | 5         | 643       | 1,675     | 456       | 34        | 16        | 12        | 10        |
| Central        | Jewell Top of Hill | X043247      | 0.19      | 19        | 173       | 4,470     | 208       | 758       | 2         | 3         | 4         |
| Central        | Jewell Top of Hill | X043248      | 0.56      | 97        | 3,580     | 9,850     | 368       | 1,315     | 30        | 24        | 10        |
| Central        | Jewell Tunnel      | X043235      | 0.01      | 0         | 54        | 27        | 313       | 6         | 0         | 0         | 1         |
| Central        | Jewell Tunnel      | X043236      | 0.22      | 6         | 283       | 707       | 150       | 18        | 5         | 3         | 4         |
| Central        | Jewell Tunnel      | X043237      | 0.01      | 2         | 992       | 153       | 2,510     | 11        | 0         | 0         | 2         |
| Central        | Jewell Tunnel      | X043239      | 0.12      | 7         | 308       | 3,830     | 200       | 36        | 3         | 2         | 12        |
| Central        | Jewell Tunnel      | X043240      | 0.04      | 2         | 195       | 24        | 722       | 25        | 3         | 1         | 6         |
| Central        | South Cut          | X043412      | 0.04      | 4         | 91        | 288       | 87        | 35        | 5         | 8         | 4         |
| Central        | South Cut          | X043416      | 0.09      | 11        | 334       | 849       | 1,410     | 8         | 3         | 1         | 15        |
| Central        | South Cut          | X043417      | 0.02      | 3         | 285       | 204       | 291       | 20        | 3         | 1         | 10        |
| Central        | South Cut          | X043422      | 0.03      | 2         | 243       | 110       | 214       | 11        | 2         | 0         | 3         |
| Central        | South Cut          | X043423      | 0.05      | 5         | 1,255     | 429       | 1,880     | 212       | 3         | 1         | 25        |
| Central        | South Cut          | X043425      | 0.04      | 14        | 14,200    | 507       | 3,870     | 127       | 9         | 3         | 62        |
| Central        | South Cut          | X043411      | 0.01      | 3         | 315       | 142       | 405       | 7         | 5         | 2         | 1         |



| Vein<br>System | Location           | Sample<br>No | Au<br>ppm | Ag<br>ppm | Cu<br>ppm | Pb<br>ppm | Zn<br>ppm | As<br>ppm | Bi<br>ppm | Te<br>ppm | Mo<br>ppm |
|----------------|--------------------|--------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| Central        | North Cut          | X043443      | 0.09      | 14        | 544       | 742       | 575       | 30        | 6         | 4         | 4         |
| Central        | North Cut          | X043201      | 0.16      | 49        | 207       | 1,265     | 102       | 83        | 98        | 18        | 12        |
| Central        | North Cut          | X043449      | 0.20      | 58        | 158       | 1,655     | 79        | 78        | 99        | 21        | 18        |
| Central        | North Cut          | X043444      | 0.07      | 12        | 808       | 2,440     | 248       | 30        | 6         | 10        | 22        |
| Central        | North Cut          | X043442      | 0.02      | 3         | 847       | 269       | 2,010     | 53        | 0         | 0         | 2         |
| Central        | High Gate          | X043203      | 0.00      | 0         | 28        | 33        | 5,310     | 4         | 0         | 0         | 0         |
| East           | North Quartz Veins | X043223      | 0.06      | 2         | 20        | 90        | 74        | 7         | 1         | 1         | 3         |
| East           | North Quartz Veins | X043225      | 0.01      | 2         | 6         | 27        | 36        | 6         | 1         | 2         | 0         |
| East           | North Quartz Veins | X043231      | 0.05      | 3         | 9         | 41        | 18        | 4         | 2         | 5         | 6         |
| East           | Pit 1              | X043401      | 0.13      | 3         | 3         | 99        | 27        | 5         | 0         | 3         | 6         |
| East           | Pit 1              | X043402      | 0.13      | 6         | 11        | 79        | 135       | 47        | 0         | 2         | 11        |
| East           | Pit 1              | X043403      | 0.01      | 0         | 36        | 65        | 135       | 8         | 1         | 0         | 7         |
| Alt            | E Century Mine     | X043426      | 0.00      | 1         | 201       | 15        | 105       | 2         | 1         | 0         | 21        |

Table 8. Summary Table of Vein System Host Rock Analyses

| Vein     | Location        | Sample  | Au   | Ag  | Cu  | Pb  | Zn  | As  | Bi  | Те  | Мо  |
|----------|-----------------|---------|------|-----|-----|-----|-----|-----|-----|-----|-----|
| System   |                 | No      | ppm  | ppm | ppm | ppm | ppm | ppm | ppm | ppm | ppm |
| Central  | Jewell Tunnel   | X043241 | 0.03 | 0   | 46  | 30  | 434 | 5   | 1   | 1   | 2   |
| Central  | Jewell W Tunnel | X043232 | 0.02 | 13  | 413 | 221 | 248 | 208 | 7   | 2   | 3   |
| Central  | North Cut       | X043202 | 0.04 | 4   | 388 | 422 | 658 | 21  | 2   | 1   | 2   |
| Central  | North Cut       | X043440 | 0.06 | 11  | 220 | 478 | 270 | 61  | 4   | 4   | 29  |
| East     | North Quartz    | X043228 | 0.04 | 4   | 30  | 36  | 21  | 3   | 2   | 3   | 2   |
| Alt Zone | E Century Mine  | X043427 | 0.00 | 0   | 87  | 19  | 19  | 1   | 1   | 0   | 86  |
| Alt Zone | E Century Mine  | X043428 | 0.00 | 0   | 43  | 39  | 37  | 1   | 0   | 0   | 6   |

# New Enterprise Mining Claim Group Vein Systems

Analysis and interpretation of the recently acquired and compiled bedrock and sample data suggests the New Enterprise mining claims can be generally characterized as having three north-south trending vein systems described here in terms of the East Vein System, Central Vein System, and the West Vein System. Compiled and acquired geochemical data will be presented on various discrimination plots to best illustrate the alteration and mineral resource potential of the overall system. The 2018 data set has been combined with historical analytical data from previous workers. The rocks will be described in terms of the Eastern Vein system, Central Vein system, West Vein system, and the A&M Minerals drill core.

### Central Vein System

The Central Vein system was the most continuous at surface. It consists of the North Cut, Enterprise shaft, Jewell shaft, and the South cut.



The "North Cut" consisted of a 0.5 meter wide quartz vein with an extensive alteration halo. The host rock to the quartz vein was a tan coloured mesocratic muscovite porphyry with an adjacent pegmatite. The host rocks were altered yellow-brown-white-yellow. Minor pyrite was observed at the contact between the host rocks and the quartz vein. White clay development was observed on the margin of the quartz vein. Within the quartz vein is green Pb-oxide alteration, Ag-bearing black alteration, and areas of comb textured quartz. The sampling from the North Cut contained: up to: 309ppm Ag; 1426ppm Bi; 1.315% Cu; 44ppm Mo; 11.03% Pb; 63.1ppm Te; 5310ppm Zn; and 0.966ppm Au.

The "Enterprise Shaft" was an area of old workings dating back to 1909. It consists of a porphyritic host rock to a 1.5meter wide vuggy, yellow-brown-red altered quartz vein which was the main Enterprise quartz vein. The east side of the vein consisted of brecciated quartz with sulphides. The west side of the pit consisted of yellow-brown-green altered Precambrian augen granite host to a second 1.5m wide yellow-brown altered vuggy quartz vein. The Enterprise Shaft area contained up to: 404ppm Ag; 378ppm Bi; 1.35% Cu; 58.2ppm Mo; 20% Pb; 55.3ppm Te; 2.71% Zn; and 3.12ppm Au. Some historical surface samples returned values of up to: 371ppm Ag; 183ppm Bi; 4.52% Cu; 19ppm Mo; 9050ppm Pb; 49ppm Te; 6.92% Zn; 6.65ppm Au. The Enterprise may be a relatively shallow cap, above or in close proximity to a porphyry Cu-Au system underlying the Cerbat Mountains which could extend from SE of Enterprise to as far NW as Mineral Park, town of Chloride, and a series of old gold-silver-copper-lead-zinc vein deposits that could also act as cap to probable porphyry system.

The "Jewel Tunnel" was a 250 foot long tunnel which was opened in about 1915. The area outside the tunnel entrance was sampled, as well as a few grab samples from within the tunnel, surface samples from various muck piles above the tunnel. Samples were also collected from an area around another smaller tunnel entrance to the west of the main Jewel tunnel.

The east side of the main Jewel Tunnel area consisted of an unaltered porphyritic host rock with some areas of fine-grained brown-yellow-black alteration. The porphyritic rocks are host to a 40cm wide dark-red-brown-black quartz vein. The margins of the quartz veins have white clay development. The east side of the tunnel consisted of up to: 12.35ppm Ag; 5.81ppm Bi; 992ppm Cu; 5.52ppm Mo; 707ppm Pb; 2.78ppm Te; 2510ppm Zn; and 0.221ppm Au. The west side of the main Jewel tunnel consisted of yellow-brown Precambrian granite with a brown-yellow-white altered porphyritic intrusive. This west side of the tunnel consisted of up to: 7.25ppm Ag; 3.03ppm Bi; 308ppm Cu; 11.55ppm Mo; 3830ppm Pb; 2.12ppm Te; 722ppm Zn; 0.117ppm Au.

Surface sample collection above the main Jewel Tunnel consisted of up to: 357ppm Ag; 510ppm Bi; 4120ppm Cu; 28.7ppm Mo; 4.21% Pb; 139.5ppm Te; 4290ppm Zn; and 3.02ppm Au. There is historical analytical data for samples collected above the main Jewel tunnel, however, the Ag-Cu-Pb-Zn analyses were presented as above the detection limit. The underground grab samples from within the main Jewel Tunnel consisted of up to: 249ppm Ag; 72ppm Bi; 1.97% Cu; 24ppm Mo; 3.82% Pb, 11.75ppm Te; 2.84% Zn; and 0.79ppm Au.

The small tunnel to the west of the main Jewel Tunnel consisted of altered Precambrian augen granite hosting a comb/vuggy sulphide bearing quartz vein. Adjacent to the quartz vein was a 10cm wide zone of black alteration. This area contained up to: 93ppm Ag; 57ppm Bi; 8551ppm Cu; 9.64ppm Mo; 8% Pb; 11.85ppm Te; 10.95% Zn; and 1.07ppm Au.



#### West Vein System

The 2018 suite of grab samples from the West Vein System were collected from three separate historically excavated pits. The 2016/2017 grab samples included three additional pits in the general vicinity of the 2018 sampled pits and includes samples from a pit 175 metres to the west and another 50 metres to the east of 2018 samples. The three excavated pits sampled in 2018 (Table 5, 6 and 7) are generally referred to as "Pit West of Shaft", "North Pits", and "North Pits Past Fence". A number of smaller excavations in the area were not sampled.

The "Pit West of Shaft" is approximately four metres deep and includes a succession of early quartz veins hosted within intensely altered porphyry (Photograph 5). Anomalous gold values were reported in each of the samples collected along the surface edge of the pit ranging from 0.29 to 1.36 ppm gold with 0.37 ppm gold reported for a single sample of altered porphyry (Table 6 and 7). The "North Pits" and "North Pits Past Fence" are approximately 130 metres and 170 metres north of the "Pit West of Shaft", respectively. Combined, these pits appear to represent a zone 20 to 50 metres across. Both the "North Pits" and "North Pits Past Fence" include late quartz veining and intensely altered porphyry (Photograph 9 and 4, respectively). Samples of the late quartz vein in the "North Pits" reported highly anomalous gold values ranging from 0.23 to 35.30 ppm with copper ranging from 2,100 to 4,870 ppm (Table 5; Photograph 4). Samples of intensely altered porphyry collected from the "North Pits Past Fence" were also anomalous in gold and copper with reported assay values ranging from 0.04 to 0.37 ppm gold and 67 to 10,150 ppm copper (Table 7; Photograph 9). The 2016/2017 grab samples also reported anomalous copper values ranging from 1,721 to 12,000 ppm, but these samples were not analyzed for gold. Interestingly, the 2016/2017 grab sample collected 175 metres to the west of the 2018 samples reported anomalous copper values of 2,654 ppm and the sample collected 50 metres to the east of the 2018 samples reported 6,606 ppm copper. Combined, the entire suite of grab samples span an area 200 metres long by 280 metres across.

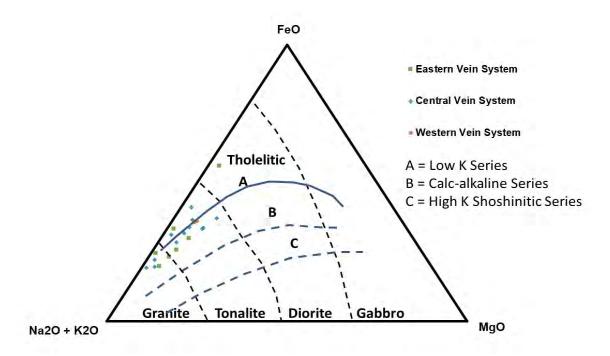
### East Vein System

The East Vein System is located 400 metres east of the Central vein system at the east edge of the Hualapai foothills and the beginning of the alluvium in the valley running parallel to old Highway 93. It loosely combines three locations that includes intensely altered rocks and minor to significant quartz veining. Compared to the rest of the Project area, outcrop is less frequent within the East Vein System and mostly covered by at least a few metres of alluvium. Historic pits were located in two small bedrock knolls and along the edge of a ridge before the start of the alluvium plain. These locations were sampled and the results presented below

The Eastern Vein system formed the most easterly portion of the New Enterprise mining claims. It consists of the Pit 1 (Far East zone), Pit 1 (Near East zone), and the Franklin zone. These sample locations extend along a strike length of approximately 1,000 metres

The "Far East Zone" consisted of a quartz vein with an extensive alteration halo. Sampling included collection of the central area of the quartz vein, the east and west margins of the vein, white clay alteration on the east side of the pit, black silver-rich horizons, white clay stockwork style veinlets within a more brown coloured alteration, and brown-red alteration on the west side of the vein. Based on our sample collection of the Far East zone, the black horizon in the sample site contained the most elevated Au (0.128ppm), Ag (5.54ppm), Pb (78.5ppm), Zn (135ppm). The hematized east and west margins of the quartz vein contained the most elevated Bi (2.85-29.8ppm), Mo (7.71-85.1ppm) and Cu (21.2-29.8ppm). The best Cu (36ppm) and Zn (135ppm) value were from the stockwork clay veinlets associated with



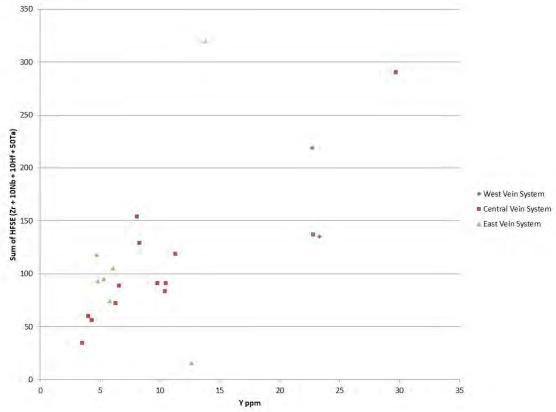

brown alteration. Anomalous Au (0.125ppm) and Pb (99ppm) values were associated with the white kaolinite clays.

The "Near East Zone" was a quartz vein that could be followed continuously for approximately 500 meters along strike and was 0.5-2 meters wide. A total of four samples were collected along the strike length in an effort to document the mineralization associated with the comb quartz texture, the yellow-green-black alteration, and the brecciated quartz fragments sealed by black-red alteration. The north end of the quartz vein contained the most elevated Cu (2260ppm), Pb (1.9%), Zn (286ppm). The sample containing the yellow-green-black alteration is most significant containing the most elevated Au (1.22ppm), Ag (181ppm), Bi (320ppm), Mo (125.5ppm), Cu (504ppm), and Pb (2160ppm).

#### Multi-element Discrimination Plots

In an effort to determine the parent magma type, an AFM (Na2O + K2O–FeOt–MgO) diagram (Figure 26) for determining tholeite versus calc-alkaline sub-magma types was used (after Irvine and Baragar, 1971; Frost et al., 2001). The Eastern Vein system plots predominantly as Low K series tholeitic granite magma. The Central and Western Vein systems plot predominantly as Calc-alkaline Series granites to tonalities. Some of the data points trending into the tholeite field may represent minor Fe-alteration from the "least altered suite". It is interesting to note that the most "productive" porphyries are granites and tonalities of a more evolved calc-alkaline nature. According to Lang and Titely, 1998, the most economically productive intrusions in Arizona are Laramide rocks that are subalkaline medium- to high-K intrusions. With the exception of the East Vein system, the observations of Lang and Titely suggest that the geochemical signatures of the New Enterprise mining claim group samples are encouraging.

Figure 26. AFM (Na2O + K2O-FeOt-MgO) Discrimination Diagram




Lang and Titley (1998) showed that productive and unproductive porphyry systems can be distinguished by trace metal compositions (Figure 27). There work was based on an in depth geochemical study of 9



porphyry complexes in Arizona. Productive and barren igneous rocks also exhibit differences in other trace elements. The high field strength elements (e.g., Hf, Ta, Zr, and Nb), Mn, and Y are depleted in productive stocks relative to barren. The mutual depletion of the high field strength elements, heavy REE, and Y is consistent with the similarities in their geochemical behavior. Unfortunately, the historical data for the Standard Mine did not contain analytical data for the HFSE. Comparing the diagram of Lang and Titley with the diagram for the New Enterprise data, there is a cluster of data points below 15ppm Y which mimic the productive character of other Arizona porphyry systems. The data points above 15ppm Y may represent some minor alteration of our fresh porphyritic hosts.

Figure 27. High Field Strength Elements versus Yttrium



The Y vs. MnO diagram of Baldwin and Pearce (1982) was used to plot the geochemical data from the New Enterprise and Standard Mine properties (Figure 28). The diagram illustrates that majority of the samples plot within the "productive" and "sub-productive" fields of the diagram. The points with the more elevated MnO contents (above 0.1% MnO) may be illustrating some of the minor alteration of our freshest samples. According to Haschke and Pearce (2006), a low Y content in a productive magma may indicate the involvement of hydrous phases during the early evolution of the magma, whereas low MnO content may indicate extensive loss of magmatic fluids from the magma and thus, their Y concentrations may be directly related to the mineralization event.



Sub-productive to Barren

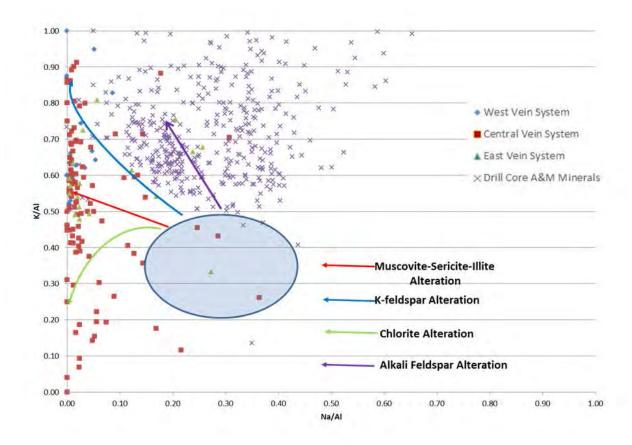
\* Eastern Vein System

\* Western Vein System

\* Western Vein System

0.1 MnO %

Figure 28. Yttrium versus Manganese Oxide


Productive

0.01

For rocks that have undergone hydrothermal alteration, Halley (2016) presented a binary plot of Na/Al vs K/Al which illustrates the alteration systems: muscovite-sericite-illite alteration, K-feldspar alteration, chlorite alteration, and alkali-feldspar alteration (Figure 29). Assuming the mineralogy of rocks at New Enterprise might be muscovite-quartz-carbonate, one could assume all of the K and Al in the rock will be within sericite. Muscovite has a composition of KAl3Si3O10(OH)2. Therefore the ratio of K:Al in the sericitized rock is 1:3 (i.e. points plotting at about 0.3 K:Al represent sericitized rock). Similarly, a totally K feldspar (KAlSi3O8) altered rock will have a K:Al ratio of 1:1 (so the rocks following the blue arrow illustrate Kspar alteration). Chlorite has no K and therefore the green arrow showing samples that have undergone chlorite alteration. Our best and "freshest/unaltered" samples collected are in the blue oval. The Western and Eastern Vein systems show a predominantly muscovite-sericite-illite alteration and a K-feldspar alteration. The Central Vein system is interesting as it illustrates all four dominant alteration types: muscovite-sericite-illite alteration, K-feldspar alteration, alkali feldspar alteration and a chlorite alteration. Being the most dominant vein system within the claim group, it is assumed that the Central Vein system was the main source of mineralizing and alteration fluids which contributed to the East and west vein systems. Being the dominant vein system it also illustrates the termination of the mineralizing system which gave rise to the low temperature waning stage fluids contributing to the chlorite alteration pattern noted on the diagram. It is interesting to also note that a number of the data points that follow the "chlorite" trend are some of the best Ag values from the 2018 sample collection. These are the samples which contained the black alteration. The Standard Mine data set contained a few data points that might be considered relatively fresh but the remainder of the dataset shows mainly an alkali-feldspar alteration pattern which is completely different than the West, Central, and East Vein systems.

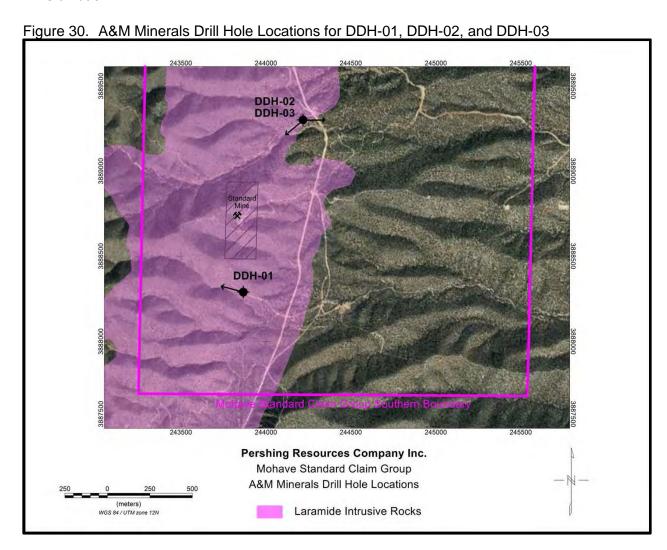


Figure 29. Alteration Plot



Early work completed by Pershing Resources upon acquiring the New Enterprise mining claim group focused on outlining a processing flowsheet and creating a concentrate for the Enterprise Mine dump pile. A report of the work this work was not prepared.

In 2016 and 2017, as part of the acquisition of additional unpatented claims, a total of 36 grab samples were collected for multi-element analysis. Of the 36 samples, 19 were collected from bedrock, 13 from mine workings dump piles and four from within the Jewel underground tunnel. Samples were described and submitted to Inspectorate America Corporation laboratory, Spanks, Nevada. The sample results have been incorporated with the follow-up sampling completed by the authors recently in January and February, 2018.


# Item 10: Drilling

Pershing Resources has not completed any drilling on either the New Enterprise or Mohave Standard mining claim groups.

Based on the available documents and completed fieldwork, there is no indication that any drilling has been done within the New Enterprise mining claims.



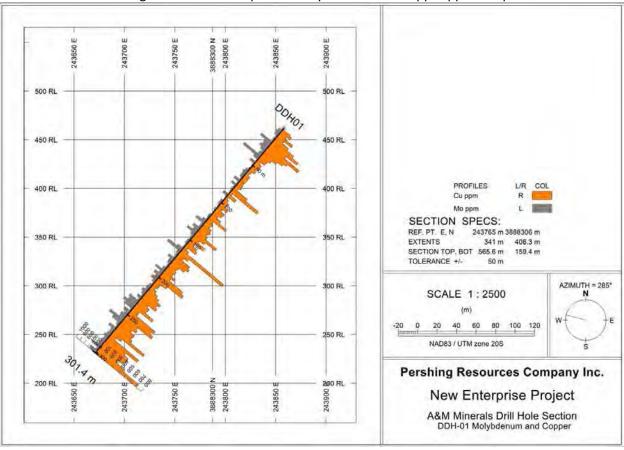
A limited number of drill holes has been completed in the Mohave Standard mining claims. An internal 2014 A&M Minerals draft corporate report authored by Mr. Mark Croteau, P.Geo., outlines the completion of three HQ drill holes in 2013 by A&M Minerals totaling 1,157.02 metres (3,796 feet) (Figure 30). This report also notes (Figure 6, page 15) an additional minimum of 15 drill holes completed in the vicinity of the Standard Mine based on a geochemical illustration by Bear Creek Explorations, included in Croteau, 2014, report. Other than a copy of the geochemical illustration, no other data was found regarding these drill holes. Croteau (2014) describes all the previous drilling in the area as having been vertical drill collars testing round, concentrically zoned, porphyry copper and molybdenum mineralization.



A&M Minerals drilling procedures for their three completed drill holes are described by Croteau in Chapter 11. The drill core procedure appears to outline secure handling from the drill site, to logging facilities in Kingman, core cutting facilities in Kukagami, Ontario, and sample deliver to AGAT Laboratories in Sudbury Ontario. The entire length of each drill hole was cut in half using a rock saw. One half of the core was returned to the core box and the other half was shipped to AGAT Laboratories for analysis.



The 2013 drilling completed by A&M Minerals was located within the vicinity of the Standard Mine; two drill holes to the northeast of the Standard Mine and one drill hole to the south (Figure 30). It is believed that all three are included entirely within the Mohave Standard mining claims. A table of drill holes and important referencing data are listed in Table 9.


Table 9. A&M Minerals HQ Drill Holes

| Hole  | UTM_E  | UTM_N   | Elevation (m) | Length<br>(m) | Azimuth | Dip |
|-------|--------|---------|---------------|---------------|---------|-----|
| DDH-1 | 243865 | 3888306 | 151           | 301.45        | 285     | -50 |
| DDH-2 | 244226 | 3889308 | 148           | 413.31        | 220     | -60 |
| DDH-3 | 244231 | 3889308 | 148           | 442.26        | 90      | -50 |

Croteau, (2014) summarizes DDH-1 as intersecting the most significant mineralization between 18.44 to 28.96 metres, averaging 0.04% copper and 0.04% molybdenum over 10.52 metres. A second zone was intersected at 231.65 to 301.45 metres (End of Hole) averaging 0.03% copper and 0.03% molybdenum over 68.80 metres (Figure 31). DDH-2 intersected from the collar to 187.5 metres an average of 0.07% copper and 0.03% molybdenum in association with chalcopyrite and molybdenite and potassic and sericite alteration (Figure 32). The third drill hole had a due east azimuth instead of the southerly azimuth like the first two drill holes. DDH-3 was interpreted to go through a "text book" example of a sericitized alteration halo passing into the potassic altered core of a porphyry system. The best intersections reported were from 6.25 to 133.50 metres with an averaged assay of 0.07% copper and 0.04% molybdenum over 127.25 metres. A second smaller zone was intersected at 222.81 to 247.04 metres with an averaged assay of 0.06% copper and 0.04% molybdenum along 24.23 metres of core length (Figure 32). The true widths of these intersections were not calculated.



Figure 31. A&M Minerals 2013 DDH-01 Cross-section illustrating distribution of reported molybdenum and copper ppm sample values.





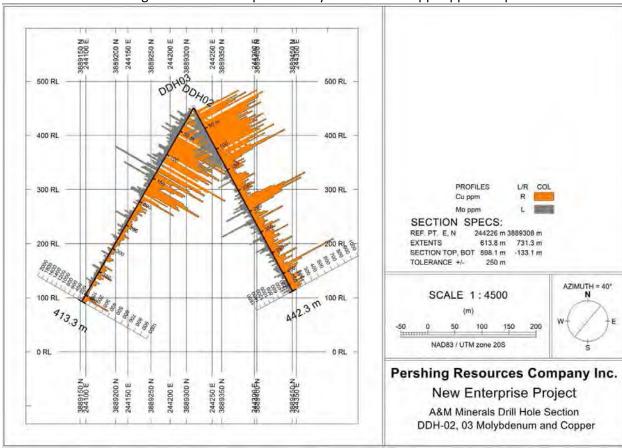



Figure 32. A&M Minerals 2013 DDH-02 Cross-section illustrating distribution of reported molybdenum and copper ppm sample values

When the authors examined the drill core stored on-site at Pershing Resources' facilities (Photograph 14), it was discovered that the core boxes were label DDH-3, DDH-5, and DDH-6. It is assumed that as part of the permitting process, A&M Minerals numerically labelled at least six proposed locations based on a different drilling order than actually completed. In Croteau, (2014), the three completed drill holes are referenced in the order of completion as, DDH-1, DDH-2, and DDH-3. It was possible with the drill hole depths for the authors to decipher core box labels with what was used in Croteau, 2014: DDH-3 = DDH-1, DDH-5 = DDH-2 and DDH-6 = DDH-3. The DDH-1, DDH-2, and DDH-3 labelling used by Croteau (2014) has been, and will be used, throughout this technical report.







Even though the A&M Minerals drilling program was clearly focused on exploration and targeting bulk tonnage, low-grade mineralization, they decided to use a sample interval of three metres. This interval was considered by them, to be commonly used in porphyry copper and molybdenum mines. Typically, sample intervals should be controlled by rock type contacts and variations in mineralization with a predetermined maximum length when the drill core is relatively consistent in character. As a result, it appears that important mineralization related to smaller veins may have been significantly diluted by the inclusion of a disproportionate amount of monzonitic host rock. A relogging and quartering of the remaining core with sample intervals matching rock type and mineralization variations can retrieve this information, if needed over selected areas, in the future.

It appears that the drill hole locations targeted by A&M Minerals were based on anomalous copper and molybdenum grab sample values obtained from surface bedrock exposures. No geophysics, geological mapping or systematic geochemical surveys appear to have been completed. This work is crucial since it was observed by the authors during their fieldwork that younger porphyry intrusive rocks and precious and base metal veining are present within the Mohave Standard mining claims hosted within the relatively older, massive, medium-grained, Laramide monzonites.

On the basis of available information, including examination of drill core stored at Pershing Resources' facilities, it is the opinion of the authors that other than the factors listed above, nothing was identified that would likely impact the accuracy or reliability of the reported drill results for their intended



purpose. However, duplication of the results will be problematic because sample intervals and sample numbers were not marked or labelled within the drill core boxes. And, regimented sampling intervals based on 3 metre intervals instead of variations in rock type, alteration and mineralization, may have masked the details of narrower vein related zones.

# Item 11: Sample Preparation, Analyses, and Security

This section addresses results for the samples used to evaluate the mineral resource potential of the New Enterprise and Mohave Standard properties.

### 2013 and 2014 A&M Minerals Grab Samples

Within the section "Historical Work by A&M Minerals", Croteau, 2014, reports the analysis of 137 rock samples collected "randomly" within the Mohave Standard mining claims. The sample results are summarized by Croteau (2014) and significant copper, molybdenum, gold and silver values are presented in tables with UTM coordinates. The copper and molybdenum results are also presented as gridded data with a cell size of 10m x 10m. The sample preparation, analytical methods used for the analysis, certificates of analysis, or a complete set of all the samples analyzed are not currently available to the authors.

Based on the field observations and review of the Croteau (2014) report completed by the authors as part of this technical report, it appears that the gridded data prepared by A&M Minerals was utilized in the site selections for the follow-up drilling program. Because of this, it is important to note that the sample sites may have been "random", but not sufficiently "random" to be part of a 10m x 10m gridded evaluation of the distribution of the bedrock values of copper and molybdenum. The sample sites are preferentially along access roads and trails and samples were collected only where bedrock was outcropping and accessible for sampling. The samples do appear to be indicative of anomalous copper and molybdenum that can be directly observed in outcrop at the sites highlighted in Croteau (2014) and subsequently drilled by A&M Minerals.

#### 2013 A&M Minerals Drill Core Samples

The following is a brief description of sample preparation, analytical, Quality Control (QC) and security procedures used in the drill program completed by A&M Minerals in 2013 as described in Croteau (2014).

Each day drill core was picked up by an A&M Minerals representative and delivered to a temporary secured core logging facility at Brown Drilling, Kingman, Arizona. At this location the drill core was logged and each box photographed, sealed on pallets, and shipped to a core cutting facility in Kukagmai, Ontario, Canada. At this facility the core was halved with a rock saw fitted with a diamond cutting blade. Half of the core was placed into sample bags, tagged and shipped to AGAT Laboratories, Sudbury, Ontario, Canada. Blanks and pulps with known values from the surface program were inserted approximately every 20 samples.

Drill core intervals were taken every 3 metres starting at the bedrock surface, continuously to the end of the drill hole. Croteau (2014) reports that this was considered reasonable because it "mimics that of most production sampling at operating mines." No consideration for any of the sample breaks was given to rock type, mineralogy, textures, alteration or veins.



The samples submitted to AGAT Laboratories were analyzed for gold, platinum and palladium by standard fire assay with an ICP-OES finish. Samples are also analyzed for base metals and silver by a four acid digest-metal package with an ICP-OES finish. AGAT Laboratories is currently accredited to ISO/IEC 17025:2005 for specific tests and certified to ISO 9001:2005. The authors could not determine whether the laboratory was accredited or certified during the completion of these analysis for A&M Minerals. There is no reason to believe that AGAT Laboratories was not independent of A&M Minerals during the completion of sample preparation, analysis, and certificate of analysis. None of the authors or Pershing Resources have any interest whatsoever, then or now, in AGAT Laboratories.

The results of the submitted blanks and reference material are included in the assay certificates with the split drill core results, but were not compiled or discussed by Croteau (2014). Nor was the original composition of the blank and reference material utilized during the program disclosed in the report. As part of the preparation of this technical report, the authors extracted the blank and reference material results from the assay certificates so that they could be compiled and reviewed.

Extracted blank results reported for copper and molybdenum are summarized in Figures 33 and 34, respectively. The blank sample appears to have been a single sample with a copper value of approximately 25 ppm and a molybdenum value of approximately 3 ppm. The reported copper values are reasonably consistent throughout the sampling program and do not indicate any issues with respect to contamination. The reported molybdenum values are much more variable than copper, but also do not indicate any issues with respect to potential contamination.

Extracted reference material results reported are extremely variable and do not appear to be representative of a properly homogenized and certified reference material. As a result, the reference material is an ineffective sample(s) to determine the accuracy of the split drill core reported results (Figure 35).

It is the author's opinion that the quality control samples submitted by A&M Minerals were sufficient to exclude the potential of sample contamination during the preparation of the samples at the laboratory, but were completely ineffective at determining the accuracy of the reported results. The failure of the reference material to determine the accuracy of the reported results is an assessment of the quality control program implemented by A&M Minerals and not the accuracy of the results reported by the laboratory.



Figure 33. A&M Minerals Blank Sample Copper Values

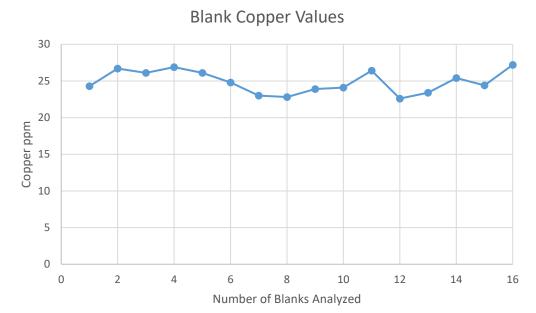



Figure 34. A&M Minerals Blank Sample Molybdenum Values

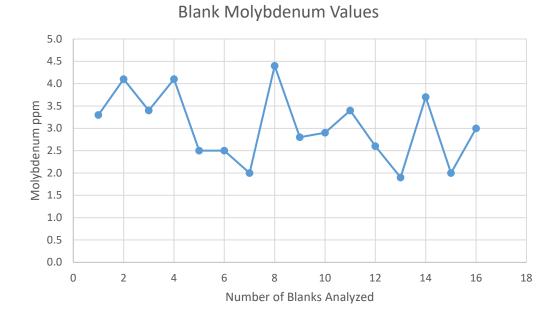
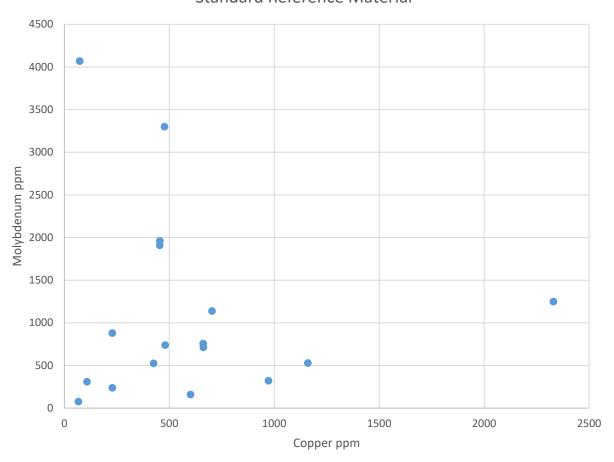






Figure 35. A&M Minerals Standard Reference Material Molybdenum versus Copper
Standard Reference Material



### 2013 Bridge Metal Processing LLC. Grab Samples, Bain, D.J.

As part of the technical report preparation and data verification completed by Bain, D.J., (2013), a total of nine samples were collected from the Enterprise Mine dump pile and submitted to ALS Group in Vancouver, Canada. A UTM coordinate for each of the samples was acquired and recorded. The samples were collected, securely handled, and submitted to ALS Group by Dr. D.J. Bain. Sample preparation included standard crushing (>70% passing <2 millimetres), pulverizing (>85% passing 0.075 millimetres), and riffle splitting procedures as outlined by ALS Group laboratory. The samples then underwent gold and silver ME-GRA22 analysis (gravimetric fire assay with atomic absorption finish) and ME-MS61 35 element analysis (near complete 4 acid digestion and ICP-MS). Higher analyses of greater than 10,000 ppm for copper, lead, zinc were submitted for "ore grade" analysis. No blanks, reference material or check samples were completed.

Laboratory certificates of analysis were not included in either Bain, D.J., 2013 or Bain, D.J., 2016. ALS Group is currently accredited under ISO 17025 for these methods and procedures, as a result, detailed descriptions should documented and archived for the methods and procedures at the time of the analysis.



There is no reason to believe that ALS Group Laboratories was not independent of Dr. D.J. Bain during the completion of sample preparation, analysis, and certificate of analysis. None of the authors or Pershing Resources have any interest whatsoever, then or now, in ALS Group of Laboratories.

### 2016 and 2017 Pershing Resources Grab Samples

Between 2016 and 2017 a total of 36 grab samples were collected from within the New Enterprise and Mohave Standard properties by Mr. Nick Barr. The results do not accompany a report, however, UTM co-ordinates field descriptions and certificates of analysis are available for each of the samples. Sample handling and collection were discussed with Nick Barr as he accompanied the authors for a day during a tour of the New Enterprise and Mohave Standard mining claim groups at the start of their field visit.

Corporation, Sparks, Nevada, by Mr. Barr. The certificate of analysis (Appendix 3 and 4) indicates standard crushing and splitting procedures with a 250 gram split pulverized to 200 mesh. Gold and silver were analyzed by gravimetric fire assay with an atomic absorption finish and 33 element atomic absorption analysis with an aqua regia digestion. No blanks, reference material or check samples accompanied the grab samples by Mr. Barr. As part of the preparation of the samples into batches for analysis, the laboratory was requested to complete pulp duplicates for six samples for multi element analysis and seven samples for gold and silver by fire assay. The pulp duplicate results are combined with the 2018 grab samples and presented in Figures 36 through 40 for selected elements.

Individual sample locations and descriptions of the samples were reviewed and discussed by the authors with Mr. Barr at a number of the sample location sites. These discussions provided the authors with the confidence needed to confirm sample locations, descriptions, and chemical results.

There is no reason to believe that Inspectorate America Corporation, Sparks, Nevada, was not independent of Mr. Barr during the completion of sample preparation, analysis, and certificate of analysis. None of the authors or Pershing Resources have any interest whatsoever, then or now, in Inspectorate America Corporation.

#### 2018 Grab Samples

During the field visit between January 20<sup>th</sup> and February 3<sup>rd</sup>, 2018, the authors collected a total of 106 grab samples from the New Enterprise mining claims. Both authors were involved in sample site selection, collection, and the secure handling and shipping of the samples to ALS USA Inc. sample preparation facilities in Reno, Nevada. After the completion of sample preparation, ALS USA Inc. securely shipped the prepared pulverized pulps to its analytical facilities in Vancouver, British Columbia, Canada, for chemical analysis. Certificates of analysis were then securely forwarded by e-mail in the form of a write-protected pdf document directly to Pershing Resources and the authors. Copies of the certificates are presented in Appendix 1.

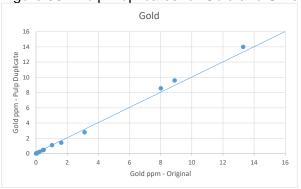
At the sample site, once a location met the criteria of being representative of a location and geological process, an approximately fist size sample was extracted directly from bedrock using a standard metal hammer (except for the four samples collected directly from the Enterprise mine dump pile). The selected sample was then placed in a new plastic bag along with two bar coded tags removed from an ALS provided sample tag booklet. The outside of the bag was labeled with the sample tag serial number with an indelible ink marker and the sample sealed with a zip tie for all 106 samples collected. The sample number was then inscribed onto a metal tag, the metal tag was combined with a magenta



coloured bristle marker which then attached with a zip tie to a 12 inch galvanized metal spike. The spike was driven into the bedrock as close to the sample site location as possible. The sample bag was then placed beside the metal spike and photographed (except for the four samples collected form the Enterprise mine dump pile and five samples collected underground within the Jewell Tunnel). Three of the samples were collected from the Jewell tunnel area by Mr. Don McDowell during his visit on January 25, 2018, two underground and one on the surface at the top of the hill. All the collected samples were then transported by the authors to their accommodations where the samples were then placed in a 5 gallon plastic bucket that was addressed and securely sealed for shipping by United Parcel Services facilities located at the Kingman airport. All samples remained securely in the possession of the authors from the sample collection site until they were shipped to ALS in Reno.

At the Reno facilities, sample preparation included coarse crushing (>70% passing <19 millimetres), fine crushing (70% <2mm), riffle splitting and pulverizing of 1,000 grams (85% passing 0.075 millimetres). Gold analysis included gravimetric fire assay with an ICP-AES finish (Au-GRA21, Au-ICP21) and 48 element four acid digestion ICP-MS analysis (ME-MS61). Higher analyses of greater than 10,000 ppm for copper, lead, zinc were submitted for "ore grade" analysis (OG-62). Higher analyses of greater than 100 ppm for silver were submitted for "ore grade" analysis (OG-62). No blanks, reference material or check samples accompanied the batch of grab samples submitted by the authors. A total of 10 pulp duplicates were requested for analysis after the initial analyses by the authors to test for sample and analytical variability.

The authors of this technical report, as well as Pershing Resources, are independent of ALS Group Laboratories during the completion of sample preparation, analysis, and submission of the certificate of analysis.


It is the opinion of the authors that the sample preparation, analytical procedures and security used by A&M Minerals, Dr. D.J. Bain, and Nick Barr were adequate, and the QC procedures were also adequate for the intended purpose. Results of the quality control measures implemented indicate that the analytical results are reliable for the intended purposes within the scope of this technical report.

#### **Pulp Duplicate Results**

Pulp duplicate results for selected key elements (Au, Ag, Cu, Pb, Zn, Bi, Te, Mn) are presented in Figures 36 to 40 for the 2016, 2017 and 2018 grab samples. Each of the figures includes the original analysis along the horizontal axis and its corresponding pulp duplicate along the vertical axis. Diagonally across each figure is a blue line that indicates a perfect 100% correlation between the original and pulp duplicate analyses. Except for a slight upward bias in the relatively higher gold analyses for the 2016 and 2017 grab samples (Figure 36a), all duplicates are within an acceptable 10% variation of the originally reported value.



Figure 36. Pulp Duplicates for Gold and Silver



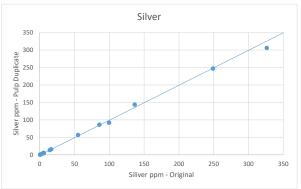
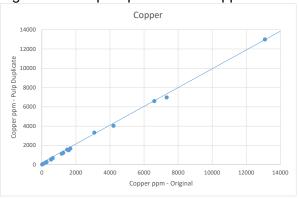




Figure 37. Pulp Duplicates for Copper and Zinc



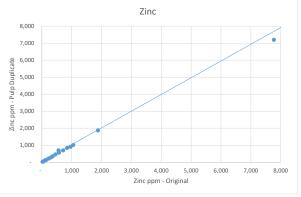
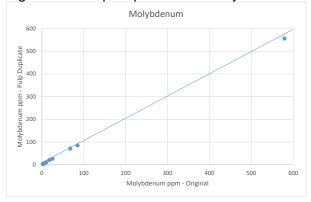




Figure 38. Pulp Duplicates for Molybdenum and Arsenic



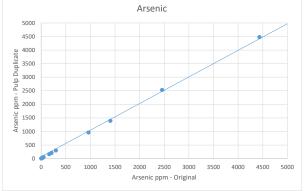
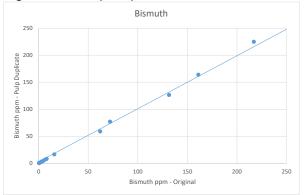






Figure 39. Pulp Duplicates for Bismuth and Tellurium



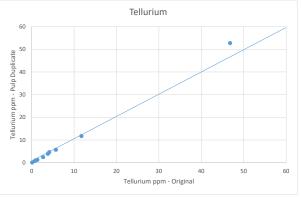
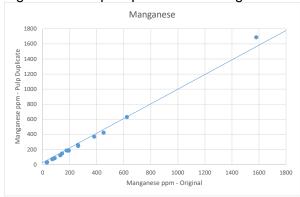




Figure 40. Pulp Duplicates for Manganese



### Item 12: Data Verification

Within the scope of the technical report outlined in Item 2: Introduction, the primary objective of the technical report was to verify the presence of gold, silver, copper, lead, zinc, and molybdenum mineralization within primarily the New Enterprise mining claims. In addition, determine whether or not known mineral occurrences were related to porphyry gold-copper-molybdenum mineralization.

A total of 106 grab samples were collected of specific types of mineralization, at a variety of locations within the New Enterprise mining claims, and submitted for multi-element analysis. Rock, mineral and textural observations accompanied each of the samples and general descriptions of the sample associations and host rocks were noted. The results were compared with near-by and regionally similar producing and past producing known porphyry-style deposits. Based on the results as presented and discussed within this Technical Report, both objectives were verified.

#### A&M Minerals Drill Core

Access was provided by Pershing Resources to examine and confirm the A&M Minerals drill core that is currently stored on-site at Pershing Resources' facilities. Drill core from all three of the completed drill holes appears to be present and in reasonable consideration. All drill core observed was halved as reported by A&M Minerals and the logs noting alteration and copper and molybdenum mineralization



appeared as indicated in the logs and discussed by Croteau (2014). However, based on the examined drill core boxes, samples could not be collected to verify assay results because of the absence of sample tags or markings on the drill core or in the drill core boxes. It may have been assumed at the time that the depth markers placed in the core boxes could be used to calculate the sample intervals because they were consistently three metres apart. However, calculating the sample interval this way on sampled, stored, and transported drill core is not considered accurate enough to verify sample results. Combined with the nugget effect caused by veining, an error in the "depth interval" could cause a discrepancy unrelated to the original quality of the assay data. As a result, no samples of the drill core were collected to verify the data. That said, additional sampling of quartered core with new sample intervals based on rock type, mineralogy, texture and mineralization can easily be completed in the future, if needed.

# Item 13: Mineral Processing and Metallurgical Testing

As part of the 2017 exploration program, Pershing Resources management collected two samples of Enterprise mine dump material and submitted them for gold and silver leachability tests to AuRIC Metallurgical Laboratories, Salt Lake City, Utah. A single two pound, random, grab sample was taken directly from the dump material and labelled "Raw Ore 2". The second sample was a two pound grab subsample taken from approximately 500 pounds of Enterprise mine dump material that had been crushed to -3/8 inch and labelled "Ground Secondary". The crushing and sizing of the "Ground Secondary" material was completed by Pershing Resources' mobile sample processing equipment (Figure 15 and 16). Assays of the "Raw Ore 2" and "Ground Secondary" are presented in Table 10. Differences between the assays is considered mostly because of the variability of the dump pile material and the lack of representivity inherently related to the variability caused by small grab samples. The compositional differences are not considered by the authors to have had a significant impact to the overall purpose of the samples in determining the leachability of the gold and silver.

AuRIC setup and completed standard scoping tests using sodium cyanide and ammonium thiosulfate at concentrations, temperatures, leaching times, and pH levels. Gold and silver recovery in sodium cyanide and ammonium thiosulfate ranges from 87.5 to 91.7 percent recovery for both the "Raw Ore 2" and the "Ground Secondary". The results clearly indicate that gold and silver in the Enterprise mine dump pile can be readily extracted using standard leaching methods and conditions (Appendix 6).

Mercury analyses were determined for "Raw Ore 2" only. AuRIC noted that 5.9 ppm value may pose a processing problem as a deleterious element.

Early in-house testwork completed by Pershing Resources using a mobile processing facility (Photograph 15) was not successful in creating a concentrate. Assessing this work is outside the scope of the technical report, however, the flowsheet being used was trying to optimize the recovery of all precious and base metals. In contrast, the AuRIC leachability testwork illustrates the effectiveness of targeting only the precious metals and achieving acceptable recoveries during the initial scoping test. If custom leaching services are located within a reasonable distance from the Pershing Resources Project, and deleterious elements are not prohibitive to extraction and tailing storage, shipment of the Enterprise mine dump material may prove to be an effective remediation approach.







Photograph 17. Sample Buckets of Enterprise Mine dump pile ready for crushing





Table 10. Assays of Samples Submitted for Leaching Tests

| Element     | Raw Ore 2 | Ground    |  |
|-------------|-----------|-----------|--|
|             |           | Secondary |  |
| Ag ppm      | 466.7     | 172.9     |  |
| Al weight % | 4.74      | 2.72      |  |
| As ppm      | 156.2     | 160.4     |  |
| Au ppm      | 1.8       | 3.3       |  |
| B ppm       | 28.7      | 41.8      |  |
| Ba ppm      | 20.8      | 8.9       |  |
| Be ppm      | 1.5       | 0.1       |  |
| Bi ppm      | 635.5     | 163.1     |  |
| Ca weight % | <0.1      | <0.1      |  |
| Cd ppm      | 30.8      | 122.4     |  |
| Co ppm      | 18.5      | 35.7      |  |
| Cr ppm      | 84.4      | 117.6     |  |
| Cu ppm      | 18,502.6  | 3,594.0   |  |
| Fe weight % | 4.72      | 6.57      |  |
| Ga ppm      | 15.8      | 12.7      |  |
| Hg ppm      | 5.9       | N/D       |  |
| Ir ppm      | N/D       | N/D       |  |
| K weight %  | <0.1      | <0.1      |  |
| La ppm      | 144.8     | N/D       |  |
| Mg weight % | <0.1      | <0.1      |  |
| Mn ppm      | 40.4      | 161.3     |  |
| Mo ppm      | 11.9      | 18.7      |  |
| Na weight % | <0.1      | <0.1      |  |
| Ni ppm      | 10.8      | 23.8      |  |
| Os ppm      | N/D       | N/D       |  |
| P ppm       | N/D       | 60.8      |  |
| Pb ppm      | 23,278.0  | 26,747.4  |  |
| Pd ppm      | N/D       | N/D       |  |
| Pt ppm      | N/D       | N/D       |  |
| Rh ppm      | N/D       | N/D       |  |
| Ru ppm      | N/D       | N/D       |  |
| S ppm       | 4,416.5   | 96,324.0  |  |
| Sb ppm      | 99.0      | N/D       |  |
| Sc ppm      | N/D       | N/D       |  |
| Si weight % | N/D       | N/D       |  |
| Sr ppm      | 10.1      | 3.9       |  |
| Th ppm      | 58.8      | 68.8      |  |
| Ti ppm      | N/D       | 64.4      |  |
| TI ppm      | N/D       | N/D       |  |
| U ppm       | N/D       | N/D       |  |
| V ppm       | N/D       | N/D       |  |
| Zn ppm      | 1,710.4   | 12,853.7  |  |



### Item 14: Mineral Resource Estimates

Mineral resource estimates have not been calculated for Pershing Resources' New Enterprise or Mohave Standard properties.

### Item 15: Mineral Reserve Estimates

Mineral reserve estimates have not been calculated for Pershing Resources' New Enterprise or Mohave Standard properties.

## **Item 16: Mining Methods**

Mining methods have not been reported for Pershing Resources' New Enterprise or Mohave Standard properties.

# **Item 17: Recovery Methods**

Recovery methods have not been determined for Pershing Resources' New Enterprise or Mohave Standard properties.

# **Item 18: Project Infrastructure**

Project infrastructure studies have not been completed for Pershing Resources' New Enterprise or Mohave Standard properties.

### Item 19: Market Studies and Contracts

Market studies or contracts have been not been completed for Pershing Resources' New Enterprise or Mohave Standard properties.

# Item 20: Environmental Studies, Permitting, and Social or Community Impact

Environmental studies or permitting and social or community impact work has not been completed Pershing Resources' New Enterprise or Mohave Standard properties.

# **Item 21: Capital and Operating Costs**

Capital and operating cost studies have not been reported for Pershing Resources' New Enterprise or Mohave Standard properties.



# **Item 22: Economic Analysis**

Economic analysis studies have been not reported for Pershing Resources' New Enterprise or Mohave Standard properties.

# **Item 23: Adjacent Properties**

### Century Mine

The Century Mine claim with a BLM Serial Number AMC 437815 staked in 2016 is currently completely surrounded by the New Enterprise Project claims. The Century Mine claim is a single east-west oriented 20.66 acre rectangle centered over the old Century Mine shaft and dump. No evidence of exploration or mining activity appears to be underway at the current time.

No records or documentation of mine workings were found by the authors during the preparation of this technical report. In addition, claim locations during mining, or since, were not reviewed or found by the authors.

It appears that in 1979 Mr. Don Laughlin extended his Standard Mine claims northward to include the Century mine until 1992. Mr. Wallace Platt appears to also have claims staked in the Century Mine area between 1975 and 1982. The mining rights over the Century Mine appear not to have been staked from 1992 to 2015.

### Standard Mine (formerly known as the Telluride Chief)

The Standard Mine is currently completely surrounded by the Mohave Standard claims of the New Enterprise project. A 20.66 north-south oriented rectangular claim with a BLM Claim Serial Number of AMC440545 is centered over the old Standard Mine shaft, dump and old mill site. No evidence of exploration or mining activity appears to be underway at the current time.

Based on fragmented records, it appears that rising molybdenum prices prior to World War I resulted in the subsequent development of the Telluride Chief, now known as the Standard Mine. The subsequent collapse of the molybdenum prices at the end of World War I resulted in the closing of Standard Mine in 1919. The mine workings consist of one timbered vertical 450 foot vertical shaft with levels at 200, 300, and 400 feet. The cement foundations of the 100 ton per day mill built in 1916 is still evident at the site.

Between 1935 and 1941, Walter Meyer dewatered the Standard Mine and extracted seven train car loads of vein material from what appears to be a 14 foot wide cross-cut on level 400. The mined material was shipped to Prescott, Arizona for processing. The shipped material is reported by Meyer in 1942 to average 1.5% molybdenum, 0.12 to 0.2 oz/ton gold, 8 oz/ton silver and 1% copper. Mining at this site has remained inactive since the collection of the sample by Mr. Meyer (Reed, 1953).

The Standard Mine 200 foot level is described as having nine separate veins with widths of 4 feet or greater. Three of the most significant veins include the Garnier Vein System (Bernice, Gig Swede, and two unnamed veins), Silver Hill System, and "Number Nine" veins. The Bernice vein system is described as 6 feet wide, striking northwest, dipping 50 to 70 degrees southwest and mineralized with molybdenum, gold, silver and copper. The Silver Hill System is described as striking east-west, flat lying dip to the north with gold, silver and molybdenum mineralization. The "Number Nine" vein is described as 4 to 7 feet wide, striking 175 to 190, dipping 60 to 65 degrees west, with high lead and some zinc with



gold and silver. All the veins are reported to have both gold and silver mineralization present (Cornell, 1917).

From 1941 to 1951, exploration and mining activity within the Standard Mine and surrounding area appears to have been dormant.

Interest in the area began again in 1952 with the staking of a number of claims by mainly a Mr. John Cochrane and Gary and Linda Overson. These claims were kept in good standing until 1999 and 2000, respectively. Mr. Don Laughlin also staked a number of claims in the Standard Mine area which lapsed in 1992.

From 2008 to 2012, exploration and mining activity within the Standard Mine and surrounding area appears to have been again become dormant.

The Standard Mine and area was not included as part of A&M Minerals property between 2013 and 2016.

### Bell Copper Corporation, Kabba Project

Near the eastern boundary of Pershing Resources' New Enterprise Project is the Kabba Project of Bell Copper Corporation. The Kabba project includes a total of 13,000 acres of unpatented and sublease mining claims as of September, 2017 (Bell Copper press releases dated September 26, 2017). It is located within the piedmont, east of the Hualapai foothills, with an alluvium bedrock cover of more than 30 metres. In the most recent press release dated March 16, 2018, Bell Copper indicated that it is integrating its data with that provided to them by Kennecott Exploration as part of their option agreement (2016 to 2018 with more than \$3 million total expenditure), to complete another drilling program in the second quarter of 2018. Previously completed drill holes K-8 to K-19 are considered by Bell Copper to "surround an as-yet-undrilled, open-ended, 1.5 kilometre-wide ovoid porphyry copper target extending more than 2 kilometres in length." (Bell Copper press release dated March 16, 2018). These drill holes are reported by Bell Copper to have "anomalous levels of one or more of the following elements; arsenic, copper, gold, lead, molybdenum, rhenium, silver, sulfur, tellurium and zinc consistent with their proximity to the envisioned porphyry copper target." They also indicated that the compiled results "continue to support Bell Copper management's view that the drilling to date has outlined the buried top of a major Laramide porphyry copper-molybdenum system." The corporate presentation posted on Bell Copper's website,

(https://docs.wixstatic.com/ugd/15e0cb\_c522517369e44da89f37c45f5409c025.pdf), provides a map that outlines the proposed copper shell situated north of McGarry's wash and directly east of the New Enterprise mining claims. The corporate presentation also updates the cross-section projection of interpreted hanging wall and footwall relationships from previously east-west, to a more southwest to northeast section, no longer including the New Enterprise mining claims as part of the interpreted footwall, "root zone", sequence of rock types.

### Item 24: Other Relevant Data and Information

All data relevant to the scope of this technical report as outlined in Item 2: Introduction has been included.



# Item 25: Interpretations and Conclusions

Pershing Resources' New Enterprise Project, located within the Maynard Mining District, Arizona, includes known porphyry copper-molybdenum mineralization with associated precious and base metalbearing quartz veining. Both these types of mineralization are considered to be indicative of a Laramide porphyry copper-molybdenum deposit type. Based on the review and compilation of available documents, in conjunction with field observations and grab sample results acquired during the completion of recent exploration work, it is easy for the author's to consider Pershing Resources' New Enterprise Project as being underexplored and highly recommend further exploration.

Situated between the Mineral Park (20 miles to the northwest) and Bagdad (45 miles to the southeast) porphyry copper-molybdenum deposits, the New Enterprise Project, and surrounding area, is considered a highly prospective area to host another significant Laramide porphyry copper-molybdenum type deposit. Even though the Laramide porphyries are a well-documented deposit type, inflexible application of these models may create an obstacle to assessing an individual properties mineral potential. In addition, literature review of porphyry model types in general, since the 1960's, easily demonstrates the evolution of the porphyry model as an ever changing incorporation of what was previously thought to be insignificant associations and controls becoming crucial factors in the exploration and discovery of new deposits.

Past research and exploration work described the New Enterprise mining claims as a "root zone". Based on the work presented in this report, it is suggested that the New Enterprise mining group is quite the opposite to a "root zone". Vein systems delineated during the current exploration work suggest the successive juxtaposition of previously overlooked Porphyry and Early Quartz Veins in association with the known high-grade Late Quartz Veins. Overlapping successive early to late paragenetic metal associations at the same location within the vein system is considered to be strongly indicative of an upward zonation from a heat source; instead of an outward lateral zonation away from the heart source typically described for porphyry copper-molybdenum deposits. If this is the case, then the host Precambrian rocks within the New Enterprise Project could be acting as a "roof", or "trap", to an underlying porphyry (possibly a gold-rich porphyry copper-molybdenum system). The "roof" would then be a primary control to the mineralization within the New Enterprise mining claim group. It is anticipated that the proportion of metals will be vertically zoned and additional metal concentration would be present at the base, within, and adjacent to the Precambrian "roof" rocks. At this time, it is not possible to estimate the depth, size or proportion of metal concentration. Geophysics, geological mapping, and geochemistry will be integral to the evaluation of the Project area and the identification and prioritization of drill targets.

Grade and width has yet to be determined for any of the mineralization within the New Enterprise mining claim group. With the presence of high-grade veins associated with potentially barren rocks, it is always difficult to determine grade over width even with drill core intersections. With the identification of lower grade rock types in association with the high-grade veins, estimation of mineralized widths will not be solely dependent on the high-grade veins as previously thought would be the case. In the absence of drill core intersections, a reasonable estimate of the grade, width and mineral resource classification cannot be determined. Drilling will also assist exploration by delineating possible "telescopic" mineral zonation that may be present in the vein systems and its potential relationship to additional underlying porphyry-style mineralized zones within the New Enterprise claim group.



All projections and opinions in this report have been prepared on the basis of information made available to the authors and are subject to uncertainties and contingencies which are difficult to accurately predict. Notwithstanding, the authors consider this report to be a true and accurate representation of the preliminary assessment of the mineral potential of the New Enterprise project.



### Item 26: Recommendations

Based on the completed work as outlined and discussed in this technical report, the authors consider the mineral resource potential of the New Enterprise as being untested and continued exploration work is highly recommend. The following two phase exploration program totally approximately \$1 million is recommended and generally outlined below. Completion of Phase 1 must be completed before Phase 2 can start. In addition, it is recommended that, if logistically possible, Phase 2 be divided into an initial and follow-up drilling program owing to the complexity and early stages of outlining the mineralization. The completion of this work may, or may not, substantiate the conclusions or improve the economic assessment of the New Enterprise Project.

#### Phase 1: Cost Estimate = \$500,000

Fixed wing airborne magnetic survey

New Enterprise and Mohave Standard claim group

Geology, Structural and Alteration Mapping and deep IP surveying over Jewell Vein New Enterprise claim group

Mineralogical and Geochemical Study of Rock Types and Alteration New Enterprise claim group

Reconnaissance Mapping and Grab Sampling (50 to 100 samples)

Mohave Standard claim group

Compilation of historic mining, excavations, mine dumps and tailings
New Enterprise and Mohave Standard claim group
-identify locations that may require remediation
-barbwire fence installation

-highlight locations for potential future remediation

Relog and Quarter Core Sampling of Vein Intersections within A&M Minerals Drill Core Mohave Standard claim group

#### Phase 2: Cost Estimate = \$500,000

Initial Drilling of Targets Identified in Phase 1
Estimate 1,000 metres
New Enterprise claim group

Follow-up Drilling based on compilation and integration of the initial drilling results
Estimate 1,000 metres
New Enterprise claim group

Compilation and Reporting of Results from Phase 1 and Phase 2



### Item 27: References

Bain, D.J., 2013. A National Instrument 43-101 Technical Report on Economic Potential of the New Enterprise Gold-Silver-Copper-Lead-Zinc Project, Kingman Area, Northwest Arizona, USA. Dated March 15, 2016, pp. 35.

Bain, D.J., 2016. A National Instrument 43-101 Technical Report on Economic Potential of the New Enterprise Gold-Silver-Copper-Lead-Zinc Project, Kingman Area, Northwest Arizona, USA. Internal Corporate Report, Dated March 15, 2016, pp 43

Bain, W.M., 2015. Testing Established Models of Hydrothermal Fluid Distribution Around Porphyry Deposits: The Application of Fluid Inclusion Research to Porphyry Deposit Exploration. Thesis submitted in partial fulfillment of a Master of Science - Geoscience, University of Nevada, Las Vegas. Pp. 208.

Baldwin, J. A., and Pearce, J. A., 1982. Discrimination of productive and nonproductive porphyritic intrusions in the Chilean Andes. Economic Geology, Volume 77, pp. 664--674.

Bouse RM, Ruiz J, Titley SR, Tosdal RM, Wooden JL (1999) Lead isotope compositions of Late Cretaceous and Early Tertiary rocks and sulfide minerals in Arizona: implications for the source of plutons and metals in porphyry copper deposits. Economic Geology, Volume 94, pp. 211–244

Cornell, R.L., 1917. Report on Property of Telluride Chief Mining Co., Internal Corporate Report, pp 3.

Croteau, M., 2014. A&M Minerals Property Report, Kingman, Arizona. Internal Corporate Report. Pp. 40

Davis, J.D., 1971. The distribution and zoning of radio-elements potassium, uranium and thorium in selected porphyry copper deposits. MSc thesis Tucson, University of Arizona, 130 p.

Dings, M.G., 1951. The Wallapai mining district, Cerbat Mountains, Mohave County, Arizona. United States Geological Survey Bulletin, 978-E, p. 123-163.

Drake, W.E., 1972. A study of ore forming fluids at the Mineral Park porphyry copper deposit, Kingman, Arizona Ph.D. dissertation, New York, Columbia University, 245 p.

Eaton, L.G., 1980. Geology of the Chloride mining district, Mohave County, Arizona, MSc thesis, Socorro, New Mexico Inst. of Mining and Tech., 133 p.

Earnshaw, B., 2011. Summary of New Enterprise Property. Internal Corporate Report. Pp. 20.

Eidel, J.J., Frost, J.E., and Cliippinger, D.M., 1968. Copper-molybdenum mineralization at Mineral Park, Mohave County, Arizona, in Ridge, J.D., ed., Ore Deposits of the United States 1933-1968. New York, p. 1259-1281.

Ellis, R.D., 1972. The Alum Wash prospect. Unpublished Report. Duval Corp. reports, 5 p.



Frost, R., Barnes, C. G., Collins, W. J., Arculus, R. J., Ellis, D. J., and Frost, C.D., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology. Journal of Petrology, Volume 42, pp. 2033-2048.

Halley, S., 2016. Interpreting multi-element geochemistry data; seminar presentation. http://www.scotthalley.com.au/public/documents/5/17/Lithogeochemistry%20Interpretation.pdf

Haschke, M., Pearce, J.A., 2006. Lithochemical exploration tools revisited: MnO and REE. GSA Abstracts with Programs, Specialty Meeting, Mendoza, Argentina, No. 2, p. 116.

Huary, P.S., 1947. Examination of zinc-lead mines in the Wallapi mining district, Mohave County, Arizona. United States Department of Interior, Bureau of Mines, RI 4101, 43 p.

Householder, E.R., 1930. Geology of Mohave County, Arizona. Engineer of Mines, Thesis. School of Mines and Metallurgy of the University of Missouri, Rolla Missouri, pp 37.

Hubbard, S., 1949. History of Telluride Chief between the first report in 1917 and the last engineer's report which was in 1940. Arizona Bureau of Land Management, Dated January 13, 1949, pp 2

Irvine, T.N., and Baragar, W.R.A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences, Volume 8, pp. 523-548.

John, D.A., 2010. Porphyry Copper Deposit Model. United States Geological Survey, Scientific Investigations Report 2010-5070-B, pp. 186.

Keith, S. B. and Wilt, J. C., 1986. Laramide Orogeny in Arizona and Adjacent Regions: A Strato-Tectonic Synthesis. Pages 501-554.

Lang, J.R., and Eastoe, C.J., 1988. Relationships between a Porphyry Cu-Mo Deposit, Base and Precious Metal Veins, and Laramide Intrusions, Mineral Park, Arizona. Economic Geology, Volume 83, pp. 551-567.

Lang, J.R., Guan, Y., and Eastoe, C.J., 1989. Stable Isotope Studies of Sulfates and Sulfides in the Mineral Park Porphyry Cu-Mo System, Arizona. Economic Geology, Volume 84, pp. 650-662.

Lang, J.R., and Titley, S.R., 1998. Isotopic and Geochemical Characteristics of Laramide Magmatic Systems in Arizona and Implications for the Genesis of Porphyry Copper Deposits. Economic Geology, Volume 93, pp. 138-170.

Laine, R., 1974. Geological-geochemical relationships between porphyry copper and porphyry molybdenum ore deposits. PhD dissertation, University of Arizona, Tucson, 326 p.

Lowell, J. D., 1974. Regional characteristics of porphyry copper deposits of the Southwest. Economic Geology, volume 69, pp. 601-617.

McClelland, G.D., 1951. The Wallapai Mining District, Cerbat Mountains, Mohave County, Arizona. Geological Survey Bulletin 978-E, Department of the Interior, United States of America. Pp 54



McMillan, W.J., and Panteleyev, A., 1988, Porphyry Copper Deposits, in Roberts, R.G., and Sheahan, P.A., editors, Ore Deposit Models: Geoscience Canada, Reprint Series 3, p. 45-58.

Meazell, P.K., 2014. Porphyry Copper Exploration of the Hualapai Mountains, Mohave County, Arizona, USA: A Multi-Faceted Approach. Thesis Submitted for Master of Science, University of Nevada, Las Vegas. Pp 159

Melchiorre, E.B., and Enders, M.S., 2003, Stable isotope geochemistry of copper carbonates at the Northwest Extension deposit, Morenci district, Arizona; implications for conditions of supergene oxidation and related mineralization: Economic Geology, v. 98, p. 607–621.

Morgan, G. J., Morgan, J.R., and Marsh, T. M., 2009, Detachment faulting on the east side of the Hualapai Mountains, Arizona: Geological Society of America, Abstracts with Programs, Vol. 41, No. 6, p. 6.

Pastor, S., 2013. Independent Technical Report, Exploration Assessment for the Kabba Porphyry Cu-Mo Project, Mohave County, Arizona. Filed on SEDAR.com, Dated October 30, 2013, pp 87.

Rehrig, W.A., and Hedrick, T.L., 1972. Regional fracturing in Laramide stocks of Arizona and its relationship to porphyry copper mineralization. Economic Geology, Volume 67, p. 198-213

Rehrig, W. A. and Heidrick, T.L., 1976. Regional tectonic stress during the Laramide and Late Tertiary intrusive periods, Basin and Range Province, Arizona. Arizona Geological Society Digest, Volume 10, p. 205-228.

Roberts, R.G., & Sheahan, P.A., 1988 (eds.). Ore Deposit Models. Geoscience Canada, Reprint Series 3, Geological Association of Canada, 194 p.

Schmidt, K., 1979. Local man makes comfortable living from the earth. Destination Kingman, November 14<sup>th</sup>, 1979, pp 10 and 12.

Schrader, F.C., 1909. Mineral Deposits of the Cerbat Range, Black Mountains, and Grand Wash Cliffs, Mohave County, Arizona. Department of the Interior, United States Geological Survey, Bulletin 397, pp 242.

Sillitoe, R.H., 1973. The tops and bottoms of porphyry copper deposits. Economic Geology, Volume 68, pp. 799-815.

Sillitoe, R.H., 2000. Gold-rich Porphyry Deposits: Descriptive and Genetic Models and their Role in Exploration and Discovery. Society of Economic Geologists Reviews, Volume 13, p. 315 – 345.

Thomas, B.E., 1949. Ore deposits of the Wallapai district, Arizona. Economic Geology, Volume 44, p. 663-705.

Thomas, B.E., 1953. Geology of the Chloride quadrangle, Arizona. Geological Society of America Bulletin, Volume 64, p. 391-420.



Thompson, J.F.H., Sillitoe, R.H., Barker, R.H., Mortensen, J.K., 1999. Intrusion-related gold deposits associated with tungsten-tin provinces. Mineralium Deposita, Volume 34, p. 323-334.

Titley, S.R., 1993. Characteristics of porphyry copper occurrence in the American southwest. Geological Association of Canada Special Paper. 40. 433-464.

Titley, S.R. and Beane, R.E., 1981. "Porphyry Copper deposits," In: B. J. Skinner, Ed., Economic Geology Seventy- fifth Anniversary Volume 1905-1980, Economic Geology Publishing Co., Littleton, pp. 214-269.

Vega, L.A., 1984. The Alteration and Mineralization of the Alum Wash Prospect, Mohave County, Arizona. Thesis Submitted in Partial Fulfillment for Master of Science, The University of Arizona, pp. 77.

Vuich, J.S., 1974. A Geologic Reconnaissance and Mineral Evaluation, Wheeler Wash area, Hualapai Mountains, Mohave County, Arizona. Thesis Submitted in partial fulfilment of a Master of Science Degree, The University of Arizona, pp 105.

Wheeler, G.M., 1871. Preliminary Report Concerning Explorations and Surveys Principally in Nevada and Arizona. United States Army Corps of Engineers.

Wilkinson, W.H., 1981. The Distribution of Alteration and Mineralization Assemblages of the Mineral Park Mine, Mohave County, Arizona. Thesis Submitted in partial fulfilment of a Doctor of Philosophy Degree, the University of Arizona. Pp 148.

Wilkinson, W.H., Jr., Vega, L.A., and Titley, S.R., 1982. Geology and ore deposits at Mineral Park, Mohave County, Arizona, In: Titley, S.R., editor, Advances in geology of the porphyry copper deposits, southwestern North America: University of Arizona Press, Tucson, Arizona, p. 523-541.

Wilson, D., and Moore, R.T., 1959. Geologic Map of Mohave County, Arizona. Prepared by the Arizona Bureau of Mines, University of Arizona, Tucson, Arizona. United States Geological Survey. Map

# **Item 28: Statement of Qualified Persons**

#### **AUTHOR'S CERTIFICATE**

- I, Edward Charles Walker, do hereby certify as follows:
  - 1. I am an independent consulting geologist, and I reside and carry on business at 115 Ermatinger Street, Lakefield, Ontario, KOL 2H0;
  - 2. That I have the degree of Bachelor of Science, First Class Honours, 1984, from Brock University, and the degree of Doctor of Philosophy in Geological Sciences, 1991, from the University of Western Ontario;
  - 3. That I am a member in good standing of the Association of Professional Geoscientists of Ontario, Member No. 0497, effective October 9, 2002;
  - 4. That I have been practicing my profession continuously since 1986;
  - 5. That I have read the definition of "Qualified Person" in National Instrument 43-101 (NI 43-101) and I certify that, by reason of my education and past relevant work experience, I fulfil the requirement to be a Qualified Person for the purposes of NI 43-101. My relevant work experience that applies to the Technical Report includes;
    - That I have been engaged in field and laboratory based testing and evaluation of mineral exploration properties since 1986, and that I have practical experience exploring for, and the evaluation of deposit types that include (but not limited to):
      - -precious and base metals,
      - -field mapping, sampling, and drilling,
      - -geochemical, textural, and mineralogical testing,
      - -design, implementation, and monitoring of QC and QA programs
      - -computer compilation and 3D modelling of mineral resource data,
      - -process mineralogy, beneficiation, and predictive metallurgy, and
      - -geological and mineral resource characterization;
    - That I have previously prepared, and assisted in the preparation of NI 43-101 technical reports;
    - That I have designed, managed and implemented mineral exploration programs to test the mineral resource potential of properties including, precious and base metal deposits;
  - That I am a joint author of the technical report entitled "NI 43-101 Technical Report assessing the Au, Cu, Mo Porphyry Potential of the New Enterprise Project, Maynard Mining District, Arizona, United States of America, for Pershing Resources Company Inc. (the "Technical Report");
  - 7. That I am solely or jointly responsible for all sections of the Technical Report;
  - 8. That I have not had any primary involvement in the New Enterprise Project which is the subject of the Technical Report;
  - 9. That I recently visited the New Enterprise Project between the dates of January 21<sup>st</sup> and February 1<sup>st</sup>, 2018;

- 10. That, as of the date of this certificate, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the technical report not misleading;
- 11. That I am independent of Pershing Resources Company Inc., according to the definition of independence in article 1.5 of NI 43-101;
- 12. That I have read National Instrument 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form;
- 13. I hereby consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files on their websites accessible by the public, of the Technical Report.

Dated at Lakefield, Ontario, Canada This 22nd day of May, 2018

PRACTISING MEMBER

Edward Wake

108

### Dr. Jim A. Renaud, P.Geo, P.Hd Renaud Geological Consulting Ltd. 21272 Denfield Rd, London, Ontario, Canada, N6H 5L2 renaudgeological@execulink.com

#### **CERIFICATE of AUTHOR**

I, Jim A. Renaud, **Professional Geologist**, do certify that:

1. I am the President and the holder of a Certificate of Authorization for:

### Renaud Geological Consulting Ltd. 21272 Denfield Rd London, Ontario, Canada, N6H 5L2

- 2. I am President and CEO of Renaud Geological Consulting Ltd.;
- 3. That I have the degree of Bachelor of Science (Chemistry and Geology), 1999, from Western University; the degree of Honors Standing in Geology, 2000, from Western University; Masters of Science (Economic Geology), 2003, from Western University; and Doctor of Philosophy in Geology, 2014, from Western University;
- 4. I am an active member of:

#### Association of Professional Geoscientists of Ontario, APGO

- 5. I have been a licensed Prospector in Ontario since 2000;
- 6. I have worked continuously as a Geologist for 18 years;
- That I am a joint author of the technical report entitled "NI 43-101 Technical Report assessing the Au, Cu, Mo Porphyry Potential of the New Enterprise Project, Maynard Mining District, Arizona, United States of America, for Pershing Resources Company Inc. (the "Technical Report");
- 8. That I am jointly responsible for all sections of the Technical Report;
- 9. That I have not had any primary involvement in the New Enterprise Project which is the subject of the Technical Report;

- 10. That I recently visited the New Enterprise Project between the dates of January 21st and February 1st, 2018;
- 11. That, as of the date of this certificate, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the technical report not misleading;
- That I am independent of Pershing Resources Company Inc., according to the definition of independence in article 1.5 of NI 43-101;
- 13. That I have read National Instrument 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form;
- 14. I hereby consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files on their websites accessible by the public, of the Technical Report.

Dated at London, Ontario, Canada This 22 day of May, 2018 Jim A. Renaud, Ph.D., P.Geo.



# Dr. Natalie J. Pietrzak-Renaud, P.Geo, P.Hd Renaud Geological Consulting Ltd. 21272 Denfield Rd, London, Ontario, Canada, N6H 5L2 natalie.renaudgeological@execulink.com

#### **CERIFICATE of AUTHOR**

- I, Natalie J. Pietrzak-Renaud, **Professional Geologist**, do certify that:
- 1. I am a Director and Manager of Operations and the holder of a Certificate of Authorization for:

## Renaud Geological Consulting Ltd. 21272 Denfield Rd London, Ontario, Canada, N6H 5L2

- 2. I am a Director and Manager of Operations of Renaud Geological Consulting Ltd.; an Adjunct Research Professor at Western University; and Lecturer of Geology at Western University;
- 3. That I have the degree of Honors Bachelor of Science (Geology), 2001, from Western University; Masters of Science (Geology), 2003, from Western University; and Doctor of Philosophy in Geology, 2011, from Western University;
- 4. I am an active member of:

#### Association of Professional Geoscientists of Ontario, APGO

- 5. I have worked continuously as a Geologist for 18 years;
- 6. That I am a joint author of the technical report entitled "NI 43-101 Technical Report assessing the Au, Cu, Mo Porphyry Potential of the New Enterprise Project, Maynard Mining District, Arizona, United States of America, for Pershing Resources Company Inc. (the "Technical Report");
- 7. That I am jointly responsible for all sections of the Technical Report;
- 8. That I have not had any primary involvement in the New Enterprise Project which is the subject of the Technical Report;

- 10. That, as of the date of this certificate, to the best of my knowledge, information and belief, the Technical Report contains all scientific and technical information that is required to be disclosed to make the technical report not misleading;
- 11. That I am independent of Pershing Resources Company Inc., according to the definition of independence in article 1.5 of NI 43-101;
- 12. That I have read National Instrument 43-101 and Form 43-101F1, and the Technical Report has been prepared in compliance with that instrument and form;
- 13. I hereby consent to the filing of the Technical Report with any stock exchange and other regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files on their websites accessible by the public, of the Technical Report.

Dated at London, Ontario, Canada This 22 day of May, 2018 Natalie J. Pietrzak-Renaud, Ph.D., P.Geo.

M. Rietzak - Renaud

# Item 29: Appendix

# Appendix 1: 2018 Sample Locations and Descriptions

| Sample<br>Number | UTM_E  | UTM_N   | Elev.<br>(m) | Vein<br>System | Sample Site      | Туре               | Colour                | Texture                           | Alteration          | Comments                                                             |
|------------------|--------|---------|--------------|----------------|------------------|--------------------|-----------------------|-----------------------------------|---------------------|----------------------------------------------------------------------|
| X043201          | 242773 | 3893136 | 469          | Central        | North Cut        | Porphyry           | yellow brown<br>green | fine-grained                      | intense             | vein contact adjacent to granite, malachite                          |
| X043202          | 242774 | 3893136 | 469          | Central        | North Cut        | Host - Granite     | white yellow<br>brown | medium-grained                    | moderate            | host rock to quartz vein                                             |
| X043203          | 242746 | 3892901 | 478          | Central        | High Point Gate  | Porphyry           | brown                 | fine-grained /<br>feldspar phyric | weak to<br>moderate | host rock west contact to quartz vein                                |
| X043204          | 242747 | 3892855 | 481          | Central        | High Point Gate  | Late Quartz Vein   | red black             | brecciated with black matrix      | oxidized            | highest elevation sample                                             |
| X043205          | 242748 | 3892873 | 480          | Central        | High Point Gate  | Late Quartz Vein   | red black             | brecciated with black matrix      | oxidized            | highest elevation sample                                             |
| X043206          | 242745 | 3892713 | 468          | Central        | Enterprise Shaft | Early Quartz Vein  | brown yellow          | laminated                         | oxidized            | contact quartz vein, west vein, west of shaft                        |
| X043207          | 242745 | 3892713 | 470          | Central        | Enterprise Shaft | Porphyry - Alt Sil | white                 | medium-grained                    | intense             | west vein, west of shaft                                             |
| X043208          | 242747 | 3892713 | 470          | Central        | Enterprise Shaft | Porphyry - Altered | brown yellow          | fine-grained                      | intense             | north wall of shaft, west of main late quartz vein                   |
| X043209          | 242746 | 3892714 | 470          | Central        | Enterprise Shaft | Porphyry - Altered | white green           | fine-grained                      | intense             | north wall of shaft, west of main late quartz vein                   |
| X043210          | 242751 | 3892706 | 470          | Central        | Enterprise Shaft | Late Quartz Vein   | brown yellow          | breccia                           | oxidized            | north wall of shaft, 10cm quartz vein, east of main late quartz vein |
| X043211          | 242752 | 3892706 | 469          | Central        | Enterprise Shaft | Porphyry - Altered | white green           | fine-grained                      | intense             | north wall of shaft, east of main late quartz vein                   |
| X043212          | 242754 | 3892706 | 470          | Central        | Enterprise Shaft | Porphyry - Altered | brown yellow          | fine-grained                      | intense             | north wall of shaft, east of main late quartz vein                   |

| Sample<br>Number | UTM_E  | UTM_N   | Elev.<br>(m) | Vein<br>System | Sample Site      | Туре               | Colour                          | Texture                   | Alteration       | Comments                                                                     |
|------------------|--------|---------|--------------|----------------|------------------|--------------------|---------------------------------|---------------------------|------------------|------------------------------------------------------------------------------|
| X043213          | 242754 | 3892706 | 470          | Central        | Enterprise Shaft | Porphyry - Altered | white green /<br>breccia matrix | fine-grained              | intense          | north wall of shaft, east of main late quartz vein                           |
| X043214          | 242747 | 3892714 | 469          | Central        | Enterprise Shaft | Early Quartz Vein  | yellow brown                    | vesicular                 | oxidized         | north wall, west edge of shaft,<br>1.5m wide quartz vein                     |
| X043215          | 242745 | 3892715 | 470          | Central        | Enterprise Shaft | Early Quartz Vein  | brown yellow<br>red             | vesicular                 | oxidized         | north wall, west edge of shaft,<br>1.5m wide quartz vein, minor<br>sulphides |
| X043216          | 242746 | 3892716 | 470          | Central        | Enterprise Shaft | Porphyry - Altered | red white<br>green              | fine-grained /<br>breccia | intense          | north wall, west edge of shaft                                               |
| X043217          | 242749 | 3892720 | 471          | Central        | Enterprise Shaft | Late Quartz Vein   | yellow brown<br>red             | vesicular                 | oxidized         | top of main late quartz vein                                                 |
| X043218          | 242764 | 3892706 | 469          | Central        | Enterprise Shaft | Late Quartz Vein   | white yellow<br>gray            | vesicular                 | weak<br>oxidized | selected from dump pile, significant sulphides                               |
| X043219          | 242762 | 3892706 | 469          | Central        | Enterprise Shaft | Porphyry           | white                           | medium-grained            | moderate         | selected from dump pile                                                      |
| X043220          | 242762 | 3892706 | 469          | Central        | Enterprise Shaft | Early Quartz Vein  | brown red<br>white              | massive                   | weak<br>oxidized | selected from dump pile, significant sulphides                               |
| X043221          | 242762 | 3892706 | 469          | Central        | Enterprise Shaft | Early Quartz Vein  | yellow brown<br>red             | laminated                 | weak<br>oxidized | selected from dump pile, significant sulphides                               |
| X043222          | 243350 | 3893225 | 441          | East           | N Quartz Veins   | Late Quartz Vein   | yellow brown                    | laminated /<br>breccia    | oxidized         | near entrance of a small tunnel                                              |
| X043223          | 243349 | 3893226 | 441          | East           | N Quartz Veins   | Porphyry - Altered | yellow brown                    | fine-grained              | moderate         | near entrance of a small tunnel                                              |
| X043224          | 243359 | 3893118 | 451          | East           | N Quartz Veins   | Late Quartz Vein   | red                             | breccia                   | oxidized         | top of hill south of tunnel                                                  |

| Sample<br>Number | UTM_E  | UTM_N   | Elev.<br>(m) | Vein<br>System | Sample Site           | Туре               | Colour                | Texture                    | Alteration | Comments                                                                      |
|------------------|--------|---------|--------------|----------------|-----------------------|--------------------|-----------------------|----------------------------|------------|-------------------------------------------------------------------------------|
| X043225          | 243357 | 3893115 | 453          | East           | N Quartz Veins        | Porphyry - Altered | yellow brown          | fine-grained               | moderate   | top of hill, south of tunnel, adjacent to quartz vein                         |
| X043226          | 243346 | 3893286 | 440          | East           | N Quartz Veins        | Late Quartz Vein   | yellow brown          | fine-grained               | oxidized   | north of tunnel, adjacent to quartz<br>vein                                   |
| X043227          | 243345 | 3893285 | 440          | East           | N Quartz Veins        | Late Quartz Vein   | yellow brown          | laminated                  | oxidized   | north of tunnel                                                               |
| X043228          | 243378 | 3893310 | 441          | East           | N Quartz Veins        | Host - Granite     | red yellow<br>brown   | medium-grained             | moderate   | northeast of tunnel, parallel zone to previous samples                        |
| X043229          | 243390 | 3893310 | 441          | East           | N Quartz Veins        | Late Quartz Vein   | red yellow<br>brown   | breccia /<br>vesicular     | oxidized   | northeast of tunnel, parallel zone to previous samples                        |
| X043230          | 243401 | 3893298 | 440          | East           | N Quartz Veins        | Late Quartz Vein   | red yellow<br>brown   | comb quartz /<br>vesicular | oxidized   | northeast of tunnel, pits outlining another parallel zone to previous samples |
| X043231          | 243401 | 3893294 | 439          | East           | N Quartz Veins        | Porphyry           | yellow brown          | fine-grained               | moderate   | northeast of tunnel, pits outlining another parallel zone to previous samples |
| X043232          | 242776 | 3892283 | 468          | Central        | Jewell W of<br>Tunnel | Host - Granite     | white yellow          | medium-grained             | intense    | east edge of smaller west tunnel opening                                      |
| X043233          | 242777 | 3892281 | 468          | Central        | Jewell W of<br>Tunnel | Late Quartz Vein   | yellow black<br>red   | comb quartz /<br>vesicular | oxidized   | east edge of smaller west tunnel opening, sulphides present                   |
| X043234          | 242777 | 3892281 | 467          | Central        | Jewell W of<br>Tunnel | Porphyry - Altered | yellow brown<br>black | fine-grained               | intense    | east edge of smaller west tunnel opening, sulphides present                   |
| X043235          | 242799 | 3892278 | 467          | Central        | Jewell Main<br>Tunnel | Porphyry           | green                 | fine-grained               | weak       | east edge of tunnel opening, chlorite                                         |

| Sample<br>Number | UTM_E  | UTM_N   | Elev.<br>(m) | Vein<br>System | Sample Site           | Туре              | Colour                | Texture                    | Alteration | Comments                                                |
|------------------|--------|---------|--------------|----------------|-----------------------|-------------------|-----------------------|----------------------------|------------|---------------------------------------------------------|
| X043236          | 242797 | 3892282 | 468          | Central        | Jewell Main<br>Tunnel | Porphyry          | brown yellow<br>black | fine-grained               | intense    | east edge of tunnel opening                             |
| X043237          | 242797 | 3892284 | 468          | Central        | Jewell Main<br>Tunnel | Porphyry          | white yellow<br>brown | fine-grained               | intense    | east edge of tunnel opening,<br>adjacent to quartz vein |
| X043238          | 242798 | 3892286 | 467          | Central        | Jewell Main<br>Tunnel | Early Quartz Vein | red black<br>brown    | massive                    | oxidized   | east edge of tunnel opening, 40cm wide                  |
| X043239          | 242797 | 3892288 | 467          | Central        | Jewell Main<br>Tunnel | Porphyry          | white                 | fine-grained               | intense    | roof entrance to tunnel                                 |
| X043240          | 242794 | 3892287 | 467          | Central        | Jewell Main<br>Tunnel | Porphyry          | brown yellow<br>white | fine-grained               | intense    | west edge of tunnel opening                             |
| X043241          | 242792 | 3892284 | 466          | Central        | Jewell Tunnel         | Host - Granite    | yellow brown          | medium-grained             | moderate   | west edge of tunnel opening                             |
| X043242          | 242793 | 3892315 | 471          | Central        | Jewell Air Vent       | Late Quartz Vein  | red brown             | comb quartz /<br>vesicular | oxidized   | west side of vent                                       |
| X043243          | 242793 | 3892317 | 471          | Central        | Jewell Air Vent       | Late Quartz Vein  | black red             | laminated                  | oxidized   | west side of vent                                       |
| X043244          | 242793 | 3892317 | 471          | Central        | Jewell Air Vent       | Late Quartz Vein  | yellow                | laminated                  | oxidized   | west side of vent                                       |
| X043245          | 242788 | 3892383 | 476          | Central        | Jewell Top of Hill    | Late Quartz Vein  | yellow black<br>green | comb quartz /<br>breccia   | oxidized   | large piece next to pit                                 |
| X043246          | 242787 | 3892385 | 476          | Central        | Jewell Top of Hill    | Late Quartz Vein  | red black             | comb quartz /<br>breccia   | oxidized   | large piece next to pit                                 |
| X043247          | 242785 | 3892387 | 476          | Central        | Jewell Top of Hill    | Porphyry          | white yellow          | fine-grained               | intense    | exposure along road                                     |
| X043248          | 242782 | 3892385 | 475          | Central        | Jewell Top of Hill    | Porphyry          | yellow brown          | fine-grained               | intense    | along edge of pit next to road                          |

| Sample<br>Number | UTM_E  | UTM_N   | Elev.<br>(m) | Vein<br>System | Sample Site           | Туре               | Colour              | Texture                                  | Alteration           | Comments                                                                |
|------------------|--------|---------|--------------|----------------|-----------------------|--------------------|---------------------|------------------------------------------|----------------------|-------------------------------------------------------------------------|
| X043249          | 242775 | 3892365 | 476          | Central        | Jewell Top of Hill    | Late Quartz Vein   | red black           | massive                                  | oxidized             | second vein west of main vein system                                    |
| X043250          | 242773 | 3892361 | 476          | Central        | Jewell Top of Hill    | Late Quartz Vein   | red black           | massive                                  | oxidized             | second vein west of main vein system                                    |
| X043251          | 242794 | 3892332 | 467          | Central        | Jewell<br>Underground | Porphyry           | grey                | fine-grained                             | moderate             | from within tunnel past air vent                                        |
| X043252          | 242794 | 3892332 | 467          | Central        | Jewell<br>Underground | Porphyry           | grey                | fine-grained                             | moderate             | from within tunnel past air vent                                        |
| X043253          | 242794 | 3892332 | 467          | Central        | Jewell<br>Underground | Late Quartz Vein   | brown white         | net textured<br>sulphides                | weak<br>oxidized     | from within tunnel past air vent, significant sulphides                 |
| X043254          | 242790 | 3892284 | 467          | Central        | Jewell Tunnel         | Porphyry - Altered | white               | fine-grained                             | moderate             | collected by Don McDowell during<br>Pershing property tour, tunnel wall |
| X043255          | 242790 | 3892284 | 467          | Central        | Jewell Tunnel         | Porphyry - Altered | red yellow          | fine-grained                             | moderate             | collected by Don McDowell during<br>Pershing property tour, tunnel wall |
| X043256          | 242783 | 3892369 | 475          | Central        | Jewell Tunnel         | Late Quartz Vein   | yellow green        | net textured<br>sulphides /<br>vesicular | oxidized             | collected by Don McDowell during<br>Pershing property tour              |
| X043401          | 243567 | 3892992 | 440          | East           | Pit 1                 | Porphyry - Altered | white               | fine grained                             | intense              | east edge of pit                                                        |
| X043402          | 243568 | 3892992 | 440          | East           | Pit 1                 | Porphyry - Altered | black brown         | fine grained                             | intense              | middle of pit                                                           |
| X043403          | 243563 | 3892994 | 441          | East           | Pit 1                 | Porphyry - Altered | brown white         | breccia                                  | intense              | mix of alteration types                                                 |
| X043404          | 243686 | 3892442 | 442          | East           | Pit 2                 | Late Quartz Vein   | yellow brown<br>red | breccia with hematite matrix             | moderate<br>oxidized | East side of vein, hematite                                             |

| Sample<br>Number | UTM_E  | UTM_N   | Elev.<br>(m) | Vein<br>System | Sample Site | Туре               | Colour                    | Texture                                  | Alteration           | Comments                                 |
|------------------|--------|---------|--------------|----------------|-------------|--------------------|---------------------------|------------------------------------------|----------------------|------------------------------------------|
| X043405          | 243685 | 3892439 | 443          | East           | Pit 2       | Late Quartz Vein   | yellow brown              | massive                                  | moderate<br>oxidized | Middle of vein, hematite, carbonate      |
| X043406          | 243685 | 3892437 | 443          | East           | Pit 2       | Late Quartz Vein   | yellow brown              | massive                                  | moderate<br>oxidized | West side of vein                        |
| X043407          | 242982 | 3893671 | 456          | Central        | Far North   | Late Quartz Vein   | yellow brown<br>red       | comb quartz                              | oxidized             | Middle of 1.5m late quartz vein          |
| X043408          | 242964 | 3893562 | 456          | Central        | Far North   | Late Quartz Vein   | yellow brown<br>red       | comb quartz                              | oxidized             | Middle of up to 2m wide late quartz vein |
| X043409          | 242922 | 3893397 | 453          | Central        | Far North   | Late Quartz Vein   | yellow black<br>red green | comb quartz                              | oxidized             | middle of vein                           |
| X043410          | 242901 | 3893259 | 458          | Central        | Far North   | Late Quartz Vein   | black red                 | brecciated with<br>black / red<br>matrix | oxidized             | middle of vein                           |
| X043411          | 242894 | 3891830 | 475          | Central        | South Cut   | Porphyry           | yellow white              | fine-grained,<br>feldspar phyric         | moderate             | west contact of vein system              |
| X043412          | 242895 | 3891829 | 474          | Central        | South Cut   | Porphyry           | yellow white              | fine-grained                             | intense              | within vein zone, 1% pyrite              |
| X043413          | 242896 | 3891828 | 474          | Central        | South Cut   | Late Quartz Vein   | yellow                    | brecciated                               | oxidized             | west contact of quartz vein, pyrite      |
| X043414          | 242896 | 3891828 | 476          | Central        | South Cut   | Late Quartz Vein   | red brown<br>black        | breccia /<br>vesicular                   | oxidized             | core of large late quartz vein           |
| X043415          | 242896 | 3891827 | 476          | Central        | South Cut   | Late Quartz Vein   | red yellow<br>brown       | laminated                                | oxidized             | east contact of late quartz vein         |
| X043416          | 242896 | 3891825 | 475          | Central        | South Cut   | Porphyry - Altered | white yellow<br>brown     | fine-grained                             | intense              | adjacent to east contact of quartz vein  |

| Sample<br>Number | UTM_E  | UTM_N   | Elev.<br>(m) | Vein<br>System | Sample Site             | Туре               | Colour                                             | Texture                      | Alteration | Comments                                     |
|------------------|--------|---------|--------------|----------------|-------------------------|--------------------|----------------------------------------------------|------------------------------|------------|----------------------------------------------|
| X043417          | 242895 | 3891826 | 477          | Central        | South Cut               | Porphyry - Altered | white yellow                                       | fine- medium-<br>grained     | intense    | 2 m away from quartz vein (granite)          |
| X043418          | 242895 | 3891828 | 477          | Central        | South Cut               | Early Quartz Vein  | yellow brown                                       | comb quartz                  | oxidized   | Smaller vein curved vein                     |
| X043419          | 242896 | 3891828 | 476          | Central        | South Cut               | Early Quartz Vein  | yellow brown<br>red                                | massive,<br>mottled colour   | oxidized   | North Smaller vein                           |
| X043420          | 242894 | 3891829 | 476          | Central        | South Cut               | Early Quartz Vein  | white red<br>brown                                 | massive,<br>mottled colour   | oxidized   | Narrow low angle vein                        |
| X043421          | 242894 | 3891832 | 476          | Central        | South Cut               | Early Quartz Vein  | white with black staining                          | massive                      | oxidized   | Low angle vein                               |
| X043422          | 242894 | 3891834 | 476          | Central        | South Cut               | Porphyry - Altered | white                                              | fine-grained                 | intense    | altered rock within vein, clay               |
| X043423          | 242896 | 3891844 | 477          | Central        | South Cut               | Porphyry - Altered | yellow brown<br>white                              | fine-grained                 | intense    | altered rock within vein                     |
| X043424          | 242896 | 3891826 | 477          | Central        | South Cut               | Early Quartz Vein  | yellow red<br>brown                                | breccia                      | oxidized   | discontinuous oxidized quartz vein           |
| X043425          | 242896 | 3891828 | 478          | Central        | South Cut               | Porphyry - Altered | green white<br>yellow                              | fine-grained                 | intense    | host to ellipsoid quartz vein                |
| X043426          | 243110 | 3891653 | 469          | Alt<br>Zone    | East of Century<br>Mine | Porphyry           | brown yellow -<br>black spots /<br>feldspar phyric | medium-grained               | moderate   | no direct quartz vein association            |
| X043427          | 243113 | 3891663 | 469          | Alt<br>Zone    | East of Century<br>Mine | Host - Granite     | white yellow                                       | medium-grained               | intense    | host rock to medium-grained porphyry         |
| X043428          | 243111 | 3891669 | 469          | Alt<br>Zone    | East of Century<br>Mine | Host - Pegmatite   | yellow brown                                       | coarse-grained               | moderate   | adjacent to porphyry and granite             |
| X043429          | 242315 | 3893163 | 469          | West           | North Pits              | Late Quartz Vein   | brown yellow                                       | laminated,<br>composite vein | oxidized   | east side of vein, adjacent to porphyry host |

| Sample<br>Number | UTM_E  | UTM_N   | Elev.<br>(m) | Vein<br>System | Sample Site           | Туре               | Colour                | Texture                                      | Alteration | Comments                                                                            |
|------------------|--------|---------|--------------|----------------|-----------------------|--------------------|-----------------------|----------------------------------------------|------------|-------------------------------------------------------------------------------------|
| X043430          | 242315 | 3893163 | 469          | West           | North Pits            | Late Quartz Vein   | red                   | massive / comb<br>quartz /<br>composite vein | oxidized   | central east vein, oxide-rich                                                       |
| X043431          | 242315 | 3893162 | 469          | West           | North Pits            | Late Quartz Vein   | black yellow          | comb quartz /<br>vesicular                   | oxidized   | central west vein, black-rich matrix                                                |
| X043432          | 242315 | 3893161 | 468          | West           | North Pits            | Late Quartz Vein   | yellow                | comb quartz /<br>vesicular                   | oxidized   | west side of vein                                                                   |
| X043433          | 242310 | 3893204 | 468          | West           | North Pits past fence | Porphyry - Altered | green grey            | fine-grained                                 | intense    | host rocks to vein system, east side of vein, malachite, sericite, chlorite         |
| X043434          | 242310 | 3893203 | 468          | West           | North Pits past fence | Porphyry - Altered | white yellow<br>brown | fine-grained                                 | intense    | host rocks to vein system, adjacent to vein, sericite, chlorite                     |
| X043435          | 242309 | 3893199 | 467          | West           | North Pits past fence | Porphyry - Altered | grey black<br>white   | fine-grained                                 | intense    | host rocks to vein system, west side of vein, malachite, chlorite                   |
| X043436          | 242285 | 3893035 | 471          | West           | Pit West of Shaft     | Early Quartz Vein  | brown yellow          | massive                                      | oxidized   | east vein, along edge of shaft                                                      |
| X043437          | 242284 | 3893034 | 471          | West           | Pit West of Shaft     | Early Quartz Vein  | white yellow<br>brown | massive                                      | oxidized   | middle vein, along edge of shaft                                                    |
| X043438          | 242284 | 3893034 | 471          | West           | Pit West of Shaft     | Porphyry - Altered | white                 | fine-grained                                 | intense    | host rock to vein, along edge of shaft, clay                                        |
| X043439          | 242282 | 3893035 | 471          | West           | Pit West of Shaft     | Early Quartz Vein  | yellow brown          | massive                                      | massive    | west vein, 30cm wide along edge of shaft                                            |
| X043440          | 242779 | 3893138 | 467          | Central        | North Cut             | Host - Pegmatite   | white yellow<br>brown | coarse-grained                               | moderate   | host rock to North Cut includes<br>minor quartz veins, quartz, potassic<br>feldspar |
| X043441          | 242779 | 3893138 | 466          | Central        | North Cut             | Early Quartz Vein  | yellow                | massive                                      | oxidized   | 25cm quartz vein at contact peg and porph                                           |

| Sample<br>Number | UTM_E  | UTM_N   | Elev.<br>(m) | Vein<br>System | Sample Site | Туре                    | Colour                | Texture                        | Alteration | Comments                                        |
|------------------|--------|---------|--------------|----------------|-------------|-------------------------|-----------------------|--------------------------------|------------|-------------------------------------------------|
| X043442          | 242778 | 3893136 | 466          | Central        | North Cut   | Porphyry -<br>Monzonite | white yellow          | medium-grained                 | moderate   | within vein system                              |
| X043443          | 242777 | 3893135 | 466          | Central        | North Cut   | Porphyry                | white yellow<br>brown | fine-grained                   | intense    | multiple near vert fractures, muscovite, pyrite |
| X043444          | 242777 | 3893135 | 467          | Central        | North Cut   | Porphyry                | white                 | fine-grained                   | intense    | adjacent to high-Pb vein                        |
| X043445          | 242776 | 3893139 | 468          | Central        | North Cut   | Late Quartz Vein        | brown                 | comb quartz<br>with black core | oxidized   | adjacent to high-Pb vein                        |
| X043446          | 242775 | 3893140 | 468          | Central        | North Cut   | Late Quartz Vein        | green brown<br>black  | comb quartz<br>with black core | oxidized   | main Pb vein                                    |
| X043447          | 242774 | 3893139 | 468          | Central        | North Cut   | Late Quartz Vein        | black                 | comb quartz<br>with black core | oxidized   | main Pb vein                                    |
| X043448          | 242773 | 3893139 | 468          | Central        | North Cut   | Late Quartz Vein        | red black             | comb quartz<br>with black core | oxidized   | West side of vein                               |
| X043449          | 242773 | 3893139 | 468          | Central        | North Cut   | Porphyry                | yellow white          | comb quartz<br>with black core | intense    | host rock adjacent to vein                      |
| X043450          | 242773 | 3893138 | 469          | Central        | North Cut   | Late Quartz Vein        | black                 | comb quartz<br>with black core | oxidized   | vein along west side of cut                     |

# Appendix 2: 2018 Assay Certificates



4977 Energy Way
Reno NV 89502
Phone: +1 775 356 5395 Fax: +1 775 355 0179
www.alsqlobal.com/geochemistry

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR RENO NV 89501 Page: 1 Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018

This copy reported on 19- FEB- 2018 Account: RECPER

### CERTIFICATE RE18026217

Project: NEW ENTERPRISE

This report is for 106 Rock samples submitted to our lab in Reno, NV, USA on 5- FEB- 2018.

The following have access to data associated with this certificate:

JAY ADAMS

JIM RENARD

ED WALKER

| ALS CODE | DESCRIPTION                         |  |
|----------|-------------------------------------|--|
| WEI- 21  | Received Sample Weight              |  |
| LOG- 22  | Sample login - Rcd w/o BarCode      |  |
| SND- ALS | Send samples to internal laboratory |  |
| CRU- 22c | Crush entire sample > 70% - 19 mm   |  |
| BAG- 01  | Bulk Master for Storage             |  |
| CRU- QC  | Crushing QC Test                    |  |
| PUL- QC  | Pulverizing QC Test                 |  |
| CRU-31   | Fine crushing - 70% < 2mm           |  |
| SPL-21   | Split sample - riffle splitter      |  |
| PUL-32   | Pulverize 1000g to 85% < 75 um      |  |

SAMPLE PREPARATION

|           | ANALYTICAL PROCEDUR            | ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALS CODE  | DESCRIPTION                    | INSTRUMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Ag- OG62  | Ore Grade Ag - Four Acid       | ICP- AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ME- OG62  | Ore Grade Elements - Four Acid | ICP- AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Cu- OG62  | Ore Grade Cu - Four Acid       | ICP- AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Pb- OG62  | Ore Grade Pb - Four Acid       | ICP- AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Zn- OG62  | Ore Grade Zn - Four Acid       | ICP- AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Au- ICP21 | Au 30g FA ICP- AES Finish      | ICP- AES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Au- GRA21 | Au 30g FA- GRAV finish         | WST-SIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ME- MS61  | 48 element four acid ICP- MS   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|           |                                | and the same of th |

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim for deposit has been determined based on the results of assays of multiple samples of geological materials collected by the prospective investor or by a qualified person selected by him/her and based on an evaluation of all engineering data which is available concerning any proposed project. Statement required by Nevada State Law NRS 519

To: PERSHING RECOURCES
ATTN: JAY ADAMS
200 SOUTH VIRGINIA ST
8TH FLOOR
RENO NV 89501

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

\*\*\*\*\* See Appendix Page for comments regarding this certificate \*\*\*\*\*

Signature:

Hanachi Bouhenchir, Lab Manager



4977 Energy Way
Reno NV 89502
Phone: +1 775 356 5395 Fax: +1 775 355 0179
www.alsglobal.com/geochemistry

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR **RENO NV 89501** 

Page: 2 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018 Account: RECPER

Project: NEW ENTERPRISE

#### CERTIFICATE OF ANALYSIS RE18026217

| Sample Description | Method<br>Analyte<br>Units<br>LOR | WEI- 21<br>Recvd Wt.<br>kg<br>0.02 | ME- MS61<br>Ag<br>ppm<br>0.01 | ME- MS61<br>AI<br>%<br>0.01 | ME- MS61<br>As<br>ppm<br>0.2 | ME- MS61<br>Ba<br>ppm<br>10 | ME- MS61<br>Be<br>ppm<br>0.05 | ME- MS61<br>Bi<br>ppm<br>0.01 | ME- MS61<br>Ca<br>%<br>0.01 | ME- MS61<br>Cd<br>ppm<br>0.02 | ME- MS61<br>Ce<br>ppm<br>0.01 | ME- MS61<br>Co<br>ppm<br>0.1 | ME- MS61<br>Cr<br>ppm<br>1 | ME- MS61<br>Cs<br>ppm<br>0.05 | ME- MS61<br>Cu<br>ppm<br>0.2 | ME- MS6<br>Fe<br>%<br>0,01 |
|--------------------|-----------------------------------|------------------------------------|-------------------------------|-----------------------------|------------------------------|-----------------------------|-------------------------------|-------------------------------|-----------------------------|-------------------------------|-------------------------------|------------------------------|----------------------------|-------------------------------|------------------------------|----------------------------|
| X043401            |                                   | 1,68                               | 2.88                          | 6,24                        | 4.5                          | 210                         | 5.81                          | 0.43                          | 0.68                        | 0.13                          | 26.5                          | 7.5                          | 37                         | 3.30                          | 3.1                          | 3.13                       |
| X043402            |                                   | 2.18                               | 5.54                          | 3.22                        | 46.8                         | 320                         | 3.15                          | 0.25                          | 0.41                        | 1.12                          | 14.10                         | 26.0                         | 16                         | 1.84                          | 11.2                         | 6.33                       |
| X043403            | - 11                              | 1.30                               | 0.36                          | 6.84                        | 7.8                          | 310                         | 7.13                          | 0.51                          | 4.45                        | 0.80                          | 39.8                          | 8.2                          | 30                         | 5.68                          | 36.0                         | 3.51                       |
| X043404            |                                   | 1.36                               | 0.44                          | 0.90                        | 50.2                         | 120                         | 4.23                          | 2.85                          | 0.04                        | 0.05                          | 12.00                         | 8.8                          | 11                         | 0.89                          | 21.2                         | 12.70                      |
| X043405            |                                   | 1.56                               | 0.93                          | 0.98                        | 6.1                          | 320                         | 0.79                          | 3.29                          | 0.05                        | 0.04                          | 6.22                          | 2.0                          | 19                         | 0,32                          | 12.8                         | 4.07                       |
| X043406            |                                   | 1.36                               | 2.50                          | 4.31                        | 3.6                          | 960                         | 3.37                          | 7.72                          | 0.11                        | 0.02                          | 38.6                          | 2.6                          | 12                         | 0.64                          | 29.8                         | 4.95                       |
| X043407            |                                   | 1.38                               | 47.4                          | 0.18                        | 11.2                         | 20                          | 0.20                          | 17.70                         | 0.01                        | 0.54                          | 1.71                          | 0.4                          | 24                         | 0.10                          | 2260                         | 5.88                       |
| X043408            |                                   | 1.14                               | 20.8                          | 0.24                        | 1.3                          | 480                         | 0.35                          | 1.06                          | 0.01                        | 0.13                          | 7.54                          | 0.5                          | 26                         | 0.07                          | 39.7                         | 1.55                       |
| X043409            |                                   | 0.90                               | >100                          | 0.63                        | 114.5                        | 90                          | 0.65                          | 320                           | 0.02                        | 0.42                          | 6.41                          | 0.6                          | 23                         | 0.22                          | 504                          | 4.03                       |
| X043410            |                                   | 1.20                               | 19.65                         | 0.36                        | 3.9                          | 50                          | 1.55                          | 3.35                          | 0.01                        | 0.20                          | 1.15                          | 0.4                          | 29                         | 0.17                          | 104.5                        | 2.26                       |
| X043411            |                                   | 1.26                               | 3.43                          | 8.04                        | 6.8                          | 1490                        | 10.40                         | 5.42                          | 0.13                        | 1,19                          | 40.2                          | 1.1                          | 18                         | 3,73                          | 315                          | 3.41                       |
| X043412            |                                   | 1.14                               | 3.51                          | 6.77                        | 35.2                         | 810                         | 8.60                          | 4.90                          | 0.04                        | 0.27                          | 133.0                         | 0.5                          | 18                         | 1.74                          | 90.5                         | 3.68                       |
| X043413            |                                   | 1.16                               | 20.3                          | 2.09                        | 109.0                        | 110                         | 2.06                          | 153.0                         | 0.06                        | 0.67                          | 25.8                          | 0.4                          | 11                         | 1.53                          | 283                          | 7.17                       |
| X043414            | - 1                               | 1.40                               | >100                          | 0.75                        | 120.0                        | 240                         | 1.14                          | 310                           | 0.04                        | 2.81                          | 16.20                         | 1.5                          | 22                         | 0.71                          | 1285                         | 9.37                       |
| X043415            |                                   | 1.06                               | >100                          | 0.88                        | 299                          | 190                         | 2.58                          | 596                           | 0.14                        | 15.45                         | 25.1                          | 3.5                          | 27                         | 0.57                          | 5740                         | 31.0                       |
| X043416            |                                   | 0.98                               | 10.55                         | 4.11                        | 8.2                          | 3520                        | 5.20                          | 3.33                          | 0.11                        | 6.97                          | 277                           | 3.4                          | 11                         | 5.14                          | 334                          | 0.96                       |
| X043417            |                                   | 1.14                               | 2.80                          | 7.57                        | 19.6                         | 1390                        | 5.64                          | 2.92                          | 0.43                        | 0.92                          | 272                           | 0.6                          | 10                         | 5.75                          | 285                          | 2.58                       |
| X043418            |                                   | 1.14                               | 55.1                          | 1.31                        | 963                          | 700                         | 2.07                          | 131.5                         | 0.07                        | 9.42                          | 25.0                          | 0.8                          | 12                         | 0.98                          | 1675                         | 9.62                       |
| X043419            |                                   | 1.64                               | 10.15                         | 0.91                        | 140.0                        | 660                         | 1.44                          | 47.0                          | 0.04                        | 3.48                          | 29.6                          | 1.3                          | 26                         | 0.52                          | 541                          | 3.72                       |
| X043420            |                                   | 0.88                               | 22.4                          | 4.83                        | 184.0                        | 840                         | 4.36                          | 14.70                         | 0.04                        | 2.34                          | 170.5                         | 6.1                          | 13                         | 3.32                          | 2150                         | 5.27                       |
| X043421            |                                   | 1.16                               | 16.25                         | 1.33                        | 96.1                         | 480                         | 1.48                          | 29.5                          | 0.06                        | 3.05                          | 82.7                          | 3.8                          | 21                         | 0.96                          | 636                          | 2.12                       |
| X043422            |                                   | 1.04                               | 2.37                          | 8.72                        | 10.6                         | 2450                        | 8.08                          | 1.78                          | 0.14                        | 0.35                          | 464                           | 0.3                          | 8                          | 7.26                          | 243                          | 0.86                       |
| X043423            |                                   | 1.12                               | 5.38                          | 7.47                        | 212                          | 760                         | 6.02                          | 3.34                          | 0.09                        | 10.50                         | 205                           | 3.0                          | 8                          | 2.61                          | 1255                         | 5.09                       |
| X043424            |                                   | 1.12                               | 6.84                          | 1.43                        | 245                          | 620                         | 1.75                          | 30.7                          | 0.12                        | 14.55                         | 31.6                          | 3.0                          | 11                         | 0.77                          | 724                          | 8.86                       |
| X043425            |                                   | 0.54                               | 14.25                         | 7.23                        | 127.0                        | 1180                        | 6.47                          | 9.05                          | 1.08                        | 16.10                         | 247                           | 10.8                         | 9                          | 5.23                          | >10000                       | 2.12                       |
| X043426            |                                   | 0.74                               | 0.51                          | 7.58                        | 1.7                          | 850                         | 3.51                          | 0.68                          | 1.11                        | 0.25                          | 47.1                          | 3,8                          | 24                         | 1.80                          | 201                          | 2.82                       |
| X043427            |                                   | 1.34                               | 0.49                          | 8.00                        | 1.3                          | 1850                        | 1.12                          | 0.68                          | 0.14                        | 0.04                          | 107.5                         | 0.7                          | 4                          | 0.89                          | 86.9                         | 1.45                       |
| X043428            |                                   | 1,20                               | 0.24                          | 7.14                        | 0.7                          | 1690                        | 1.82                          | 0.38                          | 0.50                        | 0.05                          | 357                           | 1.2                          | 5                          | 1.80                          | 42.5                         | 1.79                       |
| X043429            |                                   | 0.88                               | 17.40                         | 4.94                        | 47.3                         | .70                         | 3.77                          | 0.35                          | 0.17                        | 2.68                          | 91.4                          | 2,6                          | 102                        | 2.30                          | 2510                         | 4.89                       |
| X043430            |                                   | 0.66                               | 16.35                         | 1.56                        | 31.2                         | 50                          | 1.41                          | 3.56                          | 0.04                        | 1.97                          | 26.1                          | 1.4                          | 37                         | 1.43                          | 2100                         | 4.88                       |
| X043431            |                                   | 1.16                               | >100                          | 0.58                        | 340                          | 40                          | 0.45                          | 11.05                         | 0.03                        | 1.97                          | 6.24                          | 0.6                          | 22                         | 0.27                          | 3050                         | 7.85                       |
| X043432            |                                   | 0.92                               | >100                          | 1.52                        | 283                          | 60                          | 1.13                          | 42.5                          | 0.04                        | 4.51                          | 9.77                          | 0.8                          | 14                         | 0.65                          | 4870                         | 11.75                      |
| X043433            |                                   | 1.04                               | 11.35                         | 9.75                        | 14.5                         | 1220                        | 8.18                          | 0.82                          | 0.39                        | 11.85                         | 35.4                          | 33.1                         | 53                         | 9.06                          | >10000                       | 5.39                       |
| X043434            |                                   | 1.04                               | 2.43                          | 8.28                        | 12.3                         | 250                         | 6.51                          | 0.27                          | 0.12                        | 17.70                         | 28.6                          | 3.8                          | 40                         | 4.80                          | 4830                         | 11.80                      |
| X043435            |                                   | 1.28                               | 2.22                          | 10.05                       | 10.6                         | 890                         | 7.34                          | 0.17                          | 0.31                        | 17.60                         | 35.5                          | 39.1                         | 42                         | 3.76                          | 951                          | 5,27                       |
| X043436            |                                   | 1.22                               | 16.40                         | 0.56                        | 31.8                         | 470                         | 3.42                          | 2.45                          | 0.09                        | 1.16                          | 3.64                          | 0.4                          | 25                         | 0.43                          | 235                          | 2.25                       |
| X043437            |                                   | 1.42                               | 14.00                         | 6.90                        | 12.0                         | 1410                        | 5.26                          | 4.84                          | 0.09                        | 0.23                          | 42.1                          | 0.5                          | 35                         | 3.07                          | 33.4                         | 2.59                       |
| X043438            |                                   | 0.70                               | 7.60                          | 6.29                        | 10.3                         | 1340                        | 3.99                          | 2.83                          | 3.20                        | 0.60                          | 36.3                          | 2.4                          | 31                         | 5.66                          | 66.9                         | 2.07                       |
| X043439            |                                   | 0.92                               | 6.91                          | 1.55                        | 42.4                         | 290                         | 1.14                          | 5.15                          | 0.77                        | 0.75                          | 18.80                         | 4.7                          | 17                         | 2.09                          | 694                          | 3.30                       |
| X043440            |                                   | 0.80                               | 10.60                         | 6.81                        | 61.0                         | 1990                        | 2.18                          | 3.61                          | 0.04                        | 1.70                          | 54.7                          | 0.5                          | 7                          | 1.69                          | 220                          | 5.03                       |



4977 Energy Way Reno NV 89502 Phone: +1 775 356 5395 Fax: +1 775 355 0179 www.alsglobal.com/geochemistry

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR **RENO NV 89501** 

Page: 2 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018 Account: RECPER

| (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                              |                               |                              |                                |                            |                              |                              | C                           | ERTIFIC                    | CATE O                        | FANA                        | YSIS                         | RE180                        | 26217                     |                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------|-------------------------------|------------------------------|--------------------------------|----------------------------|------------------------------|------------------------------|-----------------------------|----------------------------|-------------------------------|-----------------------------|------------------------------|------------------------------|---------------------------|------------------------------|
| Sample Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Method<br>Analyte<br>Units<br>LOR | ME-MS61<br>Ga<br>ppm<br>0.05 | ME- MS61<br>Ge<br>ppm<br>0.05 | ME- MS61<br>Hf<br>ppm<br>0.1 | ME- MS61<br>In<br>ppm<br>0.005 | ME- MS61<br>K<br>%<br>0.01 | ME- MS61<br>La<br>ppm<br>0.5 | ME- MS61<br>Li<br>ppm<br>0,2 | ME- MS61<br>Mg<br>%<br>0.01 | ME- MS61<br>Mn<br>ppm<br>5 | ME- MS61<br>Mo<br>ppm<br>0.05 | ME- MS61<br>Na<br>%<br>0.01 | ME- MS61<br>Nb<br>ppm<br>0.1 | ME- MS61<br>Ni<br>ppm<br>0.2 | ME-MS61<br>P<br>ppm<br>10 | ME- MS61<br>Pb<br>ppm<br>0.5 |
| X043401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 23.7                         | 0.13                          | 0.2                          | 0.032                          | 3.60                       | 12.3                         | 19.4                         | 0.80                        | 818                        | 5.65                          | 0.15                        | 6.9                          | 10.7                         | 380                       | 99.0                         |
| X043402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 12.30                        | 0.12                          | 0.1                          | 0.087                          | 1.58                       | 8.1                          | 21.4                         | 0.36                        | 6090                       | 10.70                         | 0.05                        | 0.8                          | 29.5                         | 170                       | 78.5                         |
| X043403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 18.45                        | 0.13                          | 0.3                          | 0.051                          | 3.37                       | 25.5                         | 16.7                         | 0.77                        | 1560                       | 6.77                          | 0.29                        | 8.6                          | 12.4                         | 1170                      | 65,1                         |
| X043404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 1.83                         | 0.09                          | < 0.1                        | 0.008                          | 0.57                       | 4.4                          | 4.9                          | 0.05                        | 193                        | 85.1                          | 0.01                        | 0.4                          | 8.8                          | 280                       | 19.8                         |
| X043405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 2.25                         | 0.09                          | <0.1                         | 0.006                          | 0.71                       | 2.7                          | 4.0                          | 0.07                        | 114                        | 9.57                          | 0.03                        | 8.0                          | 2.6                          | 100                       | 12.5                         |
| X043406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 13,90                        | 0.12                          | 0,2                          | 0.067                          | 2.92                       | 19.0                         | 17.8                         | 0.23                        | 142                        | 5.86                          | 1.11                        | 8.7                          | 2.2                          | 550                       | 45.0                         |
| X043407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 1.77                         | 0.08                          | < 0.1                        | 2.71                           | 0.04                       | 1.5                          | 8.4                          | 0.01                        | 93                         | 34.7                          | 0.01                        | 0.1                          | 1.8                          | 200                       | >10000                       |
| X043408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 0.96                         | 0.07                          | < 0.1                        | 0.079                          | 0.09                       | 3.2                          | 15.5                         | 0.02                        | 122                        | 2.65                          | 0.01                        | 0.4                          | 1.7                          | 100                       | 254                          |
| X043409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 5.52                         | 0.09                          | 0.1                          | 2.98                           | 0.38                       | 3.9                          | 7.3                          | 0.05                        | 107                        | 125.5                         | 0.01                        | 1.3                          | 2.2                          | 430                       | 2160                         |
| X043410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 1.77                         | 0.05                          | < 0.1                        | 0.049                          | 0.15                       | 0.6                          | 12.0                         | 0.02                        | 99                         | 8.53                          | 0.01                        | 0.4                          | 2.0                          | 200                       | 296                          |
| X043411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 21.7                         | 0.17                          | 0.2                          | 0,368                          | 4.79                       | 15,3                         | 25.2                         | 0.60                        | 300                        | 1.29                          | 1.02                        | 5.3                          | 6.5                          | 900                       | 142.0                        |
| X043412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 22.1                         | 0.18                          | 0.2                          | 1.420                          | 4.82                       | 54.8                         | 32.6                         | 0.65                        | 96                         | 4.25                          | 0.03                        | 4.2                          | 5.9                          | 970                       | 288                          |
| X043412<br>X043413                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   | 11,30                        | 0.11                          | 0.3                          | 1,420                          | 1.67                       | 13.4                         | 11.5                         | 0.19                        | 131                        | 17.15                         | 0.07                        | 1.5                          | 1.4                          | 340                       | 2730                         |
| X043414                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 4.42                         | 0.08                          | 0.1                          | 2.67                           | 0.37                       | 9.9                          | 9.1                          | 0.05                        | 111                        | 14.65                         | 0.02                        | 0.4                          | 3.1                          | 230                       | 5030                         |
| X043415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 12.00                        | 0.19                          | <0.1                         | 11.70                          | 0.26                       | 14.5                         | 9.2                          | 0.07                        | 120                        | 114.5                         | 0.01                        | 0.2                          | 11.7                         | 280                       | 6580                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | 14.25                        | 0.26                          | 0.4                          | 0.784                          | 1.84                       | 136.0                        | 32.9                         | 0.25                        | 246                        | 15.45                         | 0.02                        | 10.6                         | 8.2                          | 800                       | 849                          |
| X043416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 21.7                         | 0.28                          | 0.3                          | 0.227                          | 4.78                       | 142.5                        | 24.6                         | 0.52                        | 121                        | 9.56                          | 0.05                        | 13.2                         | 2.1                          | 660                       | 204                          |
| X043417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 3.89                         | 0.09                          | 0.1                          | 1.485                          | 0.53                       | 18.2                         | 16.1                         | 0.08                        | 80                         | 67.7                          | 0.15                        | 1.1                          | 2.9                          | 140                       | 6710                         |
| X043418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 2.45                         | 0.08                          | <0.1                         | 0.523                          | 0.43                       | 17.2                         | 12.1                         | 0.06                        | 98                         | 27.1                          | 0.06                        | 0.4                          | 3.0                          | 160                       | 741                          |
| X043419<br>X043420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   | 16.10                        | 0.19                          | 0.2                          | 0.646                          | 3.31                       | 84.6                         | 21.1                         | 0.38                        | 164                        | 11.80                         | 0.04                        | 7.6                          | 6.9                          | 590                       | 3000                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | 3.54                         |                               | 0.1                          | 0.277                          | 0.77                       | 42.2                         | 14.1                         | 0.08                        | 161                        | 7.93                          | 0.02                        | 1.5                          | 4.3                          | 250                       | 1540                         |
| X043421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 25.5                         | 0.09                          | 0.1                          | 0.081                          | 5.10                       | 221                          | 25.3                         | 0.52                        | 60                         | 3.28                          | 0.03                        | 20.2                         | 1.9                          | 1360                      | 109.5                        |
| X043422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 22.8                         | 0.37                          | 0.3                          | 0.502                          | 4.85                       | 148.5                        | 23.1                         | 0.52                        | 187                        | 25.2                          | 0.04                        | 18.5                         | 4.5                          | 640                       | 429                          |
| X043423                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 5.00                         | 0.10                          | 0.1                          | 2.87                           | 1.02                       | 16.2                         | 15.4                         | 0.09                        | 128                        | 68.4                          | 0.13                        | 1.1                          | 3.7                          | 200                       | 2220                         |
| X043424<br>X043425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   | 19.15                        | 0.10                          | 0.4                          | 0.389                          | 4.07                       | 108.0                        | 24.3                         | 0.38                        | 421                        | 61.8                          | 0.03                        | 12.4                         | 16.7                         | 720                       | 507                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                              |                               | 0.3                          | 0.111                          | 2.52                       | 22.5                         | 12.7                         | 0.83                        | 422                        | 21.3                          | 2.07                        | 2.6                          | 7.9                          | 480                       | 15.2                         |
| X043426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 20.6<br>19.25                | 0.15                          | 0.3                          | 0.111                          | 3.82                       | 47.3                         | 27.3                         | 0.10                        | 35                         | 86.4                          | 0.19                        | 7.6                          | 1.8                          | 330                       | 19.4                         |
| X043427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 477076                       | 0.19                          | 0.2                          | 0.064                          | 5.38                       | 148.5                        | 5.1                          | 0.18                        | 249                        | 6.30                          | 1.47                        | 19.6                         | 2.6                          | 190                       | 38.7                         |
| X043428                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 19,10                        | 0.39                          | 0.3                          | 0.129                          | 2.56                       | 56.5                         | 27.2                         | 0.44                        | 195                        | 6.02                          | 0.03                        | 8.3                          | 18.9                         | 2330                      | >10000                       |
| X043429<br>X043430                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   | 13.80<br>4.52                | 0.13                          | 0.2                          | 0.129                          | 0.79                       | 12.1                         | 34.6                         | 0.12                        | 93                         | 4.58                          | 0.03                        | 2.3                          | 7.3                          | 460                       | >10000                       |
| A STATE OF THE STA |                                   |                              | 75.05                         |                              | 107-51                         |                            |                              |                              |                             |                            |                               | 0.05                        |                              | 3.7                          |                           |                              |
| X043431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 1.58                         | 0.09                          | <0.1                         | 0.165                          | 0.48<br>1.13               | 3.6<br>5.3                   | 12.3<br>14.4                 | 0.03                        | 88<br>85                   | 11.80                         | 0.03                        | 0.3<br>2.4                   | 3.9                          | 80<br>230                 | >10000                       |
| X043432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 5.09                         | 0.10                          | 0.1                          | 0.228                          |                            |                              | 60.0                         | 0.12                        | 1540                       | 2.93                          | 0.10                        | 15.4                         | 18.2                         | 1590                      |                              |
| X043433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 27.3                         | 0.19                          | 0.7                          | 0.117                          | 5.82                       | 11.0                         | 10.4                         | 0.55                        | 96                         | 1.17                          | 0.10                        | 3.2                          | 9.9                          | 1480                      | 2470                         |
| X043434                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 22.0<br>25.7                 | 0.14                          | 0.1                          | 0.307                          | 4.32<br>5.48               | 15.7<br>14.2                 | 35.1                         | 1.02                        | 2670                       | 1.52                          | 0.03                        | 9.8                          | 18.7                         | 1480                      | >10000<br>988                |
| X043435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                              | 77.00                         |                              |                                | 100000                     |                              | -20.00                       |                             | 2011                       |                               |                             |                              | 2.500                        |                           | -                            |
| X043436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 2.46                         | 0.05                          | <0.1                         | 0.120                          | 0.36                       | 1.7                          | 23.2                         | 0.05                        | 89<br>229                  | 7.07<br>8.65                  | 0.03                        | 0.4<br>9.2                   | 2.4                          | 250                       | 3850                         |
| X043437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 26.4                         | 0.13                          | 0.5                          | 0.037                          | 4.38                       | 20.9                         | 29.1                         |                             |                            |                               |                             |                              |                              | 240                       | 530                          |
| X043438                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 27.0                         | 0.12                          | 0.5                          | 0.030                          | 4.16                       | 16.0                         | 25.3                         | 0.68                        | 220                        | 10.85                         | 0.04                        | 10.4                         | 5.9                          | 300                       | 677                          |
| X043439                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 6.16                         | 0.09                          | 0.1                          | 0.014                          | 0.82                       | 9.5                          | 23.6                         | 0.15                        | 133                        | 25.9                          | 0.01                        | 1.4                          | 7.6                          | 180                       | 1030                         |
| X043440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | 17,10                        | 0.18                          | 0.5                          | 0.299                          | 4.72                       | 28.1                         | 12.8                         | 0.34                        | 145                        | 29.0                          | 0.11                        | 1.2                          | 1.0                          | 550                       | 478                          |



ALS USA Inc.

4977 Energy Way
Reno NV 89502
Phone: +1 775 356 5395 Fax: +1 775 355 0179
www.alsglobal.com/geochemistry

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR RENO NV 89501

Page: 2 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018 Account: RECPER

| CERTIFICATE | OF ANALYSIS             | RE18026217 |
|-------------|-------------------------|------------|
|             | 0 1 1 11 11 1 1 1 1 1 1 |            |

| Sample Description | Method<br>Analyte<br>Units<br>LOR | ME- MS61<br>Rb<br>ppm<br>0.1 | ME- MS61<br>Re<br>ppm<br>0.002 | ME- MS61<br>S<br>%<br>0.01 | ME-MS61<br>Sb<br>ppm<br>0.05 | ME- MS61<br>Sc<br>ppm<br>0,1 | ME- MS61<br>Se<br>ppm<br>1 | ME-MS61<br>Sn<br>ppm<br>0.2 | ME-MS61<br>Sr<br>ppm<br>0.2 | ME- MS61<br>Ta<br>ppm<br>0.05 | ME- MS61<br>Te<br>ppm<br>0.05 | ME- MS61<br>Th<br>ppm<br>0.01 | ME- MS61<br>Ti<br>%<br>0.005 | ME- MS61<br>TI<br>ppm<br>0.02 | ME- MS61<br>U<br>ppm<br>0.1 | ME- MS6<br>V<br>ppm<br>1 |
|--------------------|-----------------------------------|------------------------------|--------------------------------|----------------------------|------------------------------|------------------------------|----------------------------|-----------------------------|-----------------------------|-------------------------------|-------------------------------|-------------------------------|------------------------------|-------------------------------|-----------------------------|--------------------------|
| X043401            |                                   | 294                          | < 0.002                        | 0.76                       | 1.14                         | 9.5                          | <1                         | 3.1                         | 352                         | 0.42                          | 2.61                          | 2.28                          | 0.231                        | 1.37                          | 2.1                         | 67                       |
| X043402            |                                   | 134.0                        | 0.002                          | 0.25                       | 6.08                         | 5.9                          | 1                          | 1.0                         | 107.5                       | 0.10                          | 2.38                          | 3.96                          | 0.038                        | 0.67                          | 6.9                         | 58                       |
| X043403            |                                   | 197.0                        | 0.006                          | 1.63                       | 3.29                         | 16.5                         | 1                          | 1.7                         | 194.5                       | 0.59                          | 0.20                          | 4.72                          | 0.383                        | 1.15                          | 5.8                         | 131                      |
| X043404            |                                   | 25.4                         | 0.004                          | 0.07                       | 1.46                         | 0.8                          | 5                          | 0.2                         | 17.6                        | < 0.05                        | 5.71                          | 0.42                          | 0.011                        | 0.17                          | 2.6                         | 10                       |
| X043405            |                                   | 34.0                         | <0.002                         | 0.07                       | 0.48                         | 0.7                          | 1                          | 0.3                         | 21.5                        | < 0.05                        | 1.99                          | 0.33                          | 0.023                        | 0.20                          | 1.0                         | 9                        |
| X043406            |                                   | 145.0                        | <0.002                         | 0.66                       | 0.80                         | 16.4                         | 1                          | 2.1                         | 356                         | 0,49                          | 6.37                          | 1.25                          | 0.591                        | 0.74                          | 1.9                         | 66                       |
| X043407            |                                   | 2.7                          | < 0.002                        | 0.32                       | 6.96                         | 0.3                          | 2                          | 0.4                         | 3.1                         | < 0.05                        | 14.35                         | 0.74                          | 0.005                        | 0.03                          | 3.2                         | 4                        |
| X043408            |                                   | 5.8                          | < 0.002                        | 0.03                       | 1.64                         | 0,3                          | 1                          | 0.2                         | 9.8                         | < 0.05                        | 2.63                          | 0.38                          | 0.009                        | 0.03                          | 0.1                         | 4                        |
| X043409            |                                   | 26.5                         | < 0.002                        | 0.35                       | 3.59                         | 2.3                          | 13                         | 2.1                         | 9.4                         | 0.07                          | 73.0                          | 1.20                          | 0.040                        | 0.13                          | 4.1                         | 28                       |
| X043410            |                                   | 9.6                          | < 0.002                        | 0.04                       | 2.97                         | 0.4                          | 1                          | 0.2                         | 5.7                         | < 0.05                        | 7.03                          | 0.29                          | 0.005                        | 0.04                          | 0.9                         | 21                       |
| X043411            |                                   | 198.5                        | <0.002                         | 0.57                       | 0.89                         | 8.7                          | <1                         | 1.2                         | 389                         | 0.25                          | 2.04                          | 2.04                          | 0.425                        | 1.93                          | 1.8                         | 103                      |
| X043412            |                                   | 293                          | 0.002                          | 1.44                       | 1.29                         | 8,1                          | 1                          | 1.5                         | 327                         | 0.19                          | 8.39                          | 1.70                          | 0.377                        | 1.48                          | 0,8                         | 95                       |
| X043413            |                                   | 128.5                        | 0.002                          | 2.05                       | 3.57                         | 3.1                          | 1                          | 1.5                         | 59.7                        | 0.06                          | 22.7                          | 0.77                          | 0.122                        | 0.58                          | 1.0                         | 41                       |
| X043414            |                                   | 19.4                         | 0.002                          | 0.48                       | 10.45                        | 1.0                          | 2                          | 0.7                         | 54.2                        | < 0.05                        | 51.6                          | 1.40                          | 0.014                        | 0.18                          | 0.5                         | 9                        |
| X043415            |                                   | 16.5                         | 0.004                          | 0.43                       | 20.5                         | 2.9                          | 7                          | 1.8                         | 75.4                        | < 0.05                        | 237                           | 6.04                          | 0.007                        | 0.23                          | 2.9                         | 18                       |
| X043416            |                                   | 111.0                        | < 0.002                        | 0.29                       | 2.63                         | 3.3                          | 1                          | 2.7                         | 989                         | 0.77                          | 0.98                          | 13.45                         | 0,223                        | 0.55                          | 0.9                         | 43                       |
| X043417            |                                   | 246                          | 0.002                          | 1.17                       | 1.12                         | 10.0                         | <1                         | 3.1                         | 765                         | 1.00                          | 0.52                          | 13.90                         | 0.333                        | 1.36                          | 1.4                         | 69                       |
| X043418            |                                   | 34.1                         | 0.003                          | 1.08                       | 71.4                         | 1.9                          | 2                          | 1.5                         | 100.0                       | 0.06                          | 46.8                          | 6.05                          | 0.021                        | 0.21                          | 2.4                         | 23                       |
| X043419            |                                   | 25.0                         | 0.002                          | 0.34                       | 6.14                         | 1.0                          | 1                          | 0.7                         | 49.4                        | < 0.05                        | 12.15                         | 2.38                          | 0.019                        | 0.13                          | 1.3                         | 10                       |
| X043420            |                                   | 180.0                        | 0.002                          | 1.67                       | 4.48                         | 8.0                          | 1                          | 2.1                         | 429                         | 0,59                          | 3.40                          | 9.20                          | 0.163                        | 0.88                          | 1.0                         | 47                       |
| X043421            |                                   | 37.2                         | <0.002                         | 0.44                       | 1.86                         | 2.2                          | 1                          | 0.6                         | 157.0                       | 0.12                          | 2.37                          | 4.57                          | 0.034                        | 0.22                          | 0.4                         | 12                       |
| X043422            |                                   | 286                          | < 0.002                        | 0.16                       | 2.01                         | 8.1                          | 1                          | 4.0                         | 1605                        | 1.43                          | 0.30                          | 21.9                          | 0.380                        | 1.50                          | 1.5                         | 68                       |
| X043423            |                                   | 236                          | 0.003                          | 1.74                       | 4.70                         | 11.6                         | 2                          | 5.2                         | 511                         | 1.99                          | 0.87                          | 19.95                         | 0.289                        | 1.56                          | 2.0                         | 47                       |
| X043424            |                                   | 52.3                         | 0.002                          | 1.27                       | 5.35                         | 1.8                          | 1                          | 0.9                         | 197.5                       | 0.10                          | 8.32                          | 4.28                          | 0.030                        | 0.31                          | 1.0                         | 23                       |
| X043425            |                                   | 214                          | 0.005                          | 1.31                       | 8.47                         | 5,9                          | 1                          | 3.0                         | 952                         | 1.08                          | 3.28                          | 14.00                         | 0.247                        | 1.20                          | 9.0                         | 41                       |
| X043426            |                                   | 126.0                        | <0.002                         | 0.01                       | 0.24                         | 8.8                          | 1                          | 1.1                         | 402                         | 0.16                          | 0.20                          | 3,89                          | 0.218                        | 0.71                          | 1.0                         | 69                       |
| X043427            |                                   | 104.0                        | < 0.002                        | 0.23                       | 0.31                         | 3.3                          | 2                          | 1.4                         | 193.5                       | 0.81                          | 0.22                          | 8.97                          | 0.183                        | 0.56                          | 0.8                         | 29                       |
| X043428            |                                   | 167.5                        | 0.002                          | 0.01                       | 0.15                         | 3.5                          | 1                          | 3.8                         | 418                         | 1.82                          | 0.12                          | 20.6                          | 0.310                        | 0.99                          | 2.1                         | 22                       |
| X043429            |                                   | 193.0                        | < 0.002                        | 0.72                       | 3.85                         | 10.6                         | <1                         | 1.5                         | 40.4                        | 0.38                          | 11.80                         | 8.77                          | 0.341                        | 0.94                          | 21.8                        | 94                       |
| X043430            |                                   | 49.3                         | <0.002                         | 0.93                       | 8.92                         | 3.5                          | 1                          | 0.6                         | 12.6                        | 0.12                          | 1.67                          | 1.66                          | 0.101                        | 0.27                          | 11.1                        | 33                       |
| X043431            |                                   | 12.5                         | <0.002                         | 1.69                       | 101.0                        | 1.0                          | 2                          | 1.2                         | 16.1                        | < 0.05                        | 24.9                          | 0.19                          | 0.017                        | 0.09                          | 20.2                        | 9                        |
| X043432            |                                   | 53.2                         | < 0.002                        | 2.50                       | 27.5                         | 2.8                          | 1                          | 1.0                         | 12.9                        | 0.32                          | 8.32                          | 0.62                          | 0.060                        | 0.28                          | 5.0                         | 35                       |
| X043433            |                                   | 255                          | < 0.002                        | 0.03                       | 1.90                         | 30.9                         | 1                          | 3.3                         | 157.0                       | 0.91                          | 0.19                          | 2.81                          | 0.674                        | 1.65                          | 11.1                        | 183                      |
| X043434            |                                   | 321                          | < 0.002                        | 0.30                       | 2.22                         | 30.6                         | 1                          | 0.9                         | 45.1                        | 0.16                          | 0.21                          | 1.40                          | 0.231                        | 1.73                          | 17.3                        | 151                      |
| X043435            |                                   | 288                          | 0.002                          | 0.01                       | 1.49                         | 25.4                         | 1                          | 1.8                         | 73.4                        | 0.60                          | 0.07                          | 3.88                          | 0.522                        | 1.78                          | 3.8                         | 156                      |
| X043436            |                                   | 23.6                         | <0.002                         | 0.36                       | 5.35                         | 1.3                          | <1                         | 0.3                         | 39.6                        | < 0.05                        | 4.14                          | 0.21                          | 0.020                        | 0.13                          | 2,3                         | 17                       |
| X043437            |                                   | 312                          | < 0.002                        | 0.66                       | 1.41                         | 18.1                         | 1                          | 2.5                         | 145.0                       | 0.45                          | 1.95                          | 1.86                          | 0.414                        | 1.54                          | 2.6                         | 135                      |
| X043438            |                                   | 246                          | < 0.002                        | 0.44                       | 0.94                         | 13.7                         | 1                          | 3.4                         | 221                         | 0.63                          | 3.05                          | 1.71                          | 0.384                        | 1.46                          | 2.8                         | 138                      |
| X043439            |                                   | 67.6                         | < 0.002                        | 0.10                       | 2.28                         | 2.6                          | 1                          | 0.8                         | 70.1                        | 0.09                          | 2.61                          | 0.94                          | 0.056                        | 0.31                          | 7.7                         | 40                       |
| X043440            |                                   | 166,0                        | < 0.002                        | 1.08                       | 2.48                         | 12.1                         | 3                          | 2.0                         | 215                         | 0.08                          | 4.17                          | 3.54                          | 0.144                        | 1.60                          | 0.7                         | 41                       |



4977 Energy Way Reno NV 89502 Phone: +1 775 356 5395 Fax: +1 775 355 0179 www.alsglobal.com/geochemistry To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR RENO NV 89501 Page: 2 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018 Account: RECPER

Project: NEW ENTERPRISE

### CERTIFICATE OF ANALYSIS RE18026217

| Sample Description | Method<br>Analyte<br>Units<br>LOR | ME- MS61<br>W<br>ppm<br>0.1 | ME-MS61<br>Y<br>ppm<br>0.1 | ME- MS61<br>Zn<br>ppm<br>2 | ME- MS61<br>Zr<br>ppm<br>0.5 | Ag- OG62<br>Ag<br>ppm<br>1 | Cu- OG62<br>Cu<br>%<br>0.001 | Pb- OG62<br>Pb<br>%<br>0.001 | Zn- OG62<br>Zn<br>%<br>0.001 | Au-ICP21<br>Au<br>ppm<br>0.001 | Au- GRA21<br>Au<br>ppm<br>0.05 |
|--------------------|-----------------------------------|-----------------------------|----------------------------|----------------------------|------------------------------|----------------------------|------------------------------|------------------------------|------------------------------|--------------------------------|--------------------------------|
| X043401            | 2011                              | 17.3                        | 5.3                        | 27                         | 3.3                          |                            |                              |                              |                              | 0.125                          |                                |
| X043402            |                                   | 8.1                         | 12.6                       | 135                        | 1.6                          |                            |                              |                              |                              | 0.128                          |                                |
| X043403            |                                   | 62.3                        | 24.1                       | 135                        | 4.1                          |                            |                              |                              |                              | 0.010                          |                                |
| X043404            |                                   | 268                         | 4.6                        | 62                         | 1.1                          |                            |                              |                              |                              | 0.024                          |                                |
| X043404<br>X043405 |                                   | 30.0                        | 1.5                        | 12                         | 1.4                          |                            |                              |                              |                              | 0.010                          |                                |
|                    |                                   |                             | 11.2                       | 27                         | 4.7                          |                            |                              |                              | _                            | 0.046                          |                                |
| X043406            |                                   | 62.6                        | 0.7                        | 286                        | 0.8                          |                            |                              | 1,900                        |                              | 0.176                          |                                |
| X043407            |                                   | 0.7                         |                            | 54                         | 0.8                          |                            |                              | 1,500                        |                              | 0.198                          |                                |
| X043408            |                                   | 0.7                         | 1.0                        |                            |                              | 404                        |                              |                              |                              | 1.220                          |                                |
| X043409            |                                   | 4.0                         | 1.2                        | 148                        | 2.5                          | 181                        |                              |                              |                              | 0.348                          |                                |
| X043410            |                                   | 0.8                         | 0.3                        | 102                        | 0.9                          |                            |                              |                              |                              | 1.07                           |                                |
| X043411            |                                   | 36.1                        | 6.3                        | 405                        | 4.8                          |                            |                              |                              |                              | 0.014                          |                                |
| X043412            |                                   | 87.6                        | 4.0                        | 87                         | 6.2                          |                            |                              |                              |                              | 0.044                          |                                |
| X043413            |                                   | 20.8                        | 2.2                        | 115                        | 2.7                          |                            |                              |                              |                              | 0.135                          |                                |
| X043414            |                                   | 12.4                        | 0.9                        | 690                        | 2.1                          | 161                        |                              |                              |                              | 3.04                           |                                |
| X043415            |                                   | 38,5                        | 2.5                        | 2980                       | 1.6                          | 645                        |                              |                              |                              | >10.0                          | 9.89                           |
| X043416            |                                   | 43.2                        | 5.7                        | 1410                       | 14.4                         |                            |                              |                              |                              | 0.092                          |                                |
| X043417            |                                   | 38.3                        | 5.3                        | 291                        | 5.5                          |                            |                              |                              |                              | 0.019                          |                                |
| X043418            |                                   | 4.6                         | 2.4                        | 845                        | 2.9                          |                            |                              |                              |                              | 1.030                          |                                |
| X043419            |                                   | 3.4                         | 1.3                        | 761                        | 1.3                          |                            |                              |                              |                              | 0.304                          |                                |
| X043420            |                                   | 17.6                        | 7.0                        | 2070                       | 7.8                          |                            |                              |                              |                              | 0.347                          |                                |
| X043421            |                                   | 4.0                         | 1.8                        | 1140                       | 4.9                          |                            |                              |                              |                              | 0.134                          |                                |
| X043422            |                                   | 50.7                        | 8.8                        | 214                        | 10.5                         |                            |                              |                              |                              | 0.032                          |                                |
| X043423            |                                   | 28.9                        | 6.9                        | 1880                       | 8.2                          |                            |                              |                              |                              | 0.053                          |                                |
|                    |                                   | 6.7                         | 0.9                        | 1810                       | 4.4                          |                            |                              |                              |                              | 0.071                          |                                |
| X043424<br>X043425 |                                   | 38.2                        | 59.3                       | 3870                       | 11.1                         |                            | 1.420                        |                              |                              | 0.044                          |                                |
|                    | _                                 | 2.2                         | 12.7                       | 105                        | 6.0                          |                            | -                            |                              |                              | 0.003                          |                                |
| X043426            |                                   |                             | 15.0                       | 19                         | 6.5                          |                            |                              |                              |                              | 0.001                          |                                |
| X043427            |                                   | 12.4                        | 34.5                       | 37                         | 4.7                          |                            |                              |                              |                              | < 0.001                        |                                |
| X043428            |                                   | 4.1<br>27.2                 | 6.4                        | 1580                       | 7.0                          |                            |                              | 2.84                         |                              | 0.512                          |                                |
| X043429            |                                   | 5.4                         | 1.5                        | 765                        | 4.6                          |                            |                              | 1.490                        |                              | 0,225                          |                                |
| X043430            |                                   |                             |                            |                            |                              | 404                        |                              | 10.55                        |                              | 8.32                           |                                |
| X043431            |                                   | 0.6                         | 1.0                        | 514                        | 0.9                          | 194                        |                              | 5.05                         |                              | >10.0                          | 35.3                           |
| X043432            |                                   | 5.0                         | 1.9                        | 839                        | 2.0                          | 119                        | 4 045                        | 5.05                         |                              |                                | 33.3                           |
| X043433            |                                   | 17.2                        | 22.7                       | 6720                       | 12.5                         |                            | 1.015                        | 4 446                        |                              | 0.184                          |                                |
| X043434            |                                   | 15,5                        | 6.1                        | 4690                       | 3.1                          |                            |                              | 1.110                        |                              | 0.043                          |                                |
| X043435            |                                   | 41.7                        | 23.3                       | 4420                       | 4.9                          |                            |                              |                              |                              | 0.067                          |                                |
| X043436            |                                   | 2.3                         | . 0.7                      | 232                        | 0.6                          |                            |                              |                              |                              | 1.625                          |                                |
| X043437            |                                   | 40.4                        | 3.6                        | 70                         | 8.9                          |                            |                              |                              |                              | 0.314                          |                                |
| X043438            |                                   | 45.3                        | 3.2                        | 228                        | 9.2                          |                            |                              |                              |                              | 0.373                          |                                |
| X043439            |                                   | 5.9                         | 2.8                        | 868                        | 3.3                          |                            |                              |                              |                              | 0.293                          |                                |
| X043440            |                                   | 16.2                        | 3.5.                       | 270                        | 13.6                         |                            |                              |                              |                              | 0.055                          |                                |



X043228

X043229

XO43230

ALS USA Inc.

4977 Energy Way Reno NV 89502 Phone: +1 775 356 5395 Fax: +1 775 355 0179 www.alsglobal.com/geochemistry To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR **RENO NV 89501** 

Page: 3 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018 Account: RECPER

CERTIFICATE OF ANALYSIS RE18026217

Project: NEW ENTERPRISE

| ,                  |                                   |                                    |                               |                             |                              |                             |                               |                               | C                           | EKTIFIC                       | LATEO                         | F ANAI                       | LY515                      | KE180                         | 26217                        |                            |
|--------------------|-----------------------------------|------------------------------------|-------------------------------|-----------------------------|------------------------------|-----------------------------|-------------------------------|-------------------------------|-----------------------------|-------------------------------|-------------------------------|------------------------------|----------------------------|-------------------------------|------------------------------|----------------------------|
| Sample Description | Method<br>Analyte<br>Units<br>LOR | WEI- 21<br>Recvd Wt.<br>kg<br>0.02 | ME- MS61<br>Ag<br>ppm<br>0.01 | ME- MS61<br>Al<br>%<br>0.01 | ME- MS61<br>As<br>ppm<br>0.2 | ME- MS61<br>Ba<br>ppm<br>10 | ME- MS61<br>Be<br>ppm<br>0.05 | ME- MS61<br>Bi<br>ppm<br>0.01 | ME- MS61<br>Ca<br>%<br>0.01 | ME- MS61<br>Cd<br>ppm<br>0.02 | ME- MS61<br>Ce<br>ppm<br>0.01 | ME- MS61<br>Co<br>ppm<br>0.1 | ME- MS61<br>Cr<br>ppm<br>1 | ME- MS61<br>Cs<br>ppm<br>0.05 | ME- MS61<br>Cu<br>ppm<br>0.2 | ME- MS6<br>Fe<br>%<br>0.01 |
| X043441            |                                   | 1.32                               | 18.05                         | 0.26                        | 3.6                          | 100                         | 0.35                          | 0.36                          | 0.01                        | 0.86                          | 2.75                          | 0.5                          | 25                         | 0.19                          | 110.0                        | 1.24                       |
| X043442            |                                   | 1.10                               | 2.91                          | 8,84                        | 52.5                         | 490                         | 8.21                          | 0.29                          | 0.07                        | 10.65                         | 53.4                          | 2.3                          | 35                         | 2,60                          | 847                          | 5.07                       |
| X043443            |                                   | 1.50                               | 14.35                         | 7.17                        | 29.7                         | 630                         | 5.79                          | 6.39                          | 0.05                        | 3.12                          | 51.9                          | 0.6                          | 32                         | 2.21                          | 544                          | 3.85                       |
| X043444            |                                   | 0.68                               | 12.25                         | 5.79                        | 29.6                         | 1080                        | 3.18                          | 6,37                          | 0.15                        | 0.32                          | 437                           | 0.5                          | 6                          | 4.82                          | 808                          | 4.17                       |
| X043445            |                                   | 0.88                               | 44.3                          | 0,69                        | 9.5                          | 350                         | 0.40                          | 3,56                          | 0.01                        | 0.43                          | 22.2                          | 0.3                          | 24                         | 0.28                          | 1370                         | 3.34                       |
| X043446            |                                   | 0.72                               | 42.9                          | 0.43                        | 235                          | 50                          | 0.36                          | 20.4                          | 0.01                        | 0.80                          | 6.60                          | 0.5                          | 19                         | 0.10                          | 7140                         | 4.27                       |
| X043447            |                                   | 0.78                               | 79.0                          | 0.42                        | 250                          | 110                         | 0.29                          | 47.4                          | 0.01                        | 0.71                          | 6.93                          | 0.5                          | 17                         | 0.14                          | >10000                       | 5.78                       |
| X043448            |                                   | 1.90                               | 37.5                          | 0.32                        | 19.9                         | 40                          | 0.25                          | 7.20                          | < 0.01                      | 0.06                          | 2.75                          | 0.3                          | 36                         | 0.09                          | 118.0                        | 1.22                       |
| X043449            |                                   | 1.08                               | 58.1                          | 0.43                        | 78.4                         | 190                         | 0.53                          | 99.1                          | 0.01                        | 0.38                          | 9.33                          | 0.3                          | 32                         | 0.11                          | 158.0                        | 2.09                       |
| X043450            |                                   | 1.38                               | >100                          | 0.20                        | 489                          | 40                          | 0.31                          | 510                           | 0.01                        | 1.21                          | 8.26                          | 0.5                          | 38                         | 0.10                          | 810                          | 3.75                       |
| X043201            |                                   | 1.22                               | 49.2                          | 4.94                        | 82.7                         | 1060                        | 2.68                          | 98.0                          | 0.01                        | 0.58                          | 301                           | 8.0                          | 22                         | 1.12                          | 207                          | 1.42                       |
| X043202            |                                   | 1.78                               | 3.92                          | 6.98                        | 21.1                         | 1580                        | 2.49                          | 2.43                          | 0.05                        | 2,70                          | 379                           | 0.5                          | 10                         | 3.46                          | 388                          | 3,46                       |
| X043203            |                                   | 0.76                               | 0.18                          | 7.66                        | 4.1                          | 1140                        | 2.75                          | 0.41                          | 0.25                        | 4.48                          | 43.9                          | 4.5                          | 8                          | 4.91                          | 28.2                         | 1.65                       |
| X043204            |                                   | 0.82                               | 14.55                         | 0.91                        | 20.3                         | 140                         | 0.75                          | 9.37                          | 0.01                        | 0.37                          | 5.68                          | 1.5                          | 17                         | 0.86                          | 95.9                         | 2.98                       |
| X043205            |                                   | 0.94                               | 41.6                          | 0.47                        | 161.5                        | 470                         | 0.48                          | 106.0                         | 0.02                        | 0.62                          | 7.62                          | 1.0                          | 24                         | 0.31                          | 217                          | 5.16                       |
| X043206            |                                   | 1.32                               | 5.70                          | 8.47                        | 71.3                         | 1190                        | 4.79                          | 3.71                          | 0.05                        | 0.40                          | >500                          | 0.6                          | 9                          | 1.32                          | 133.0                        | 2.43                       |
| X043207            |                                   | 1.66                               | 8.68                          | 7.16                        | 86.9                         | 210                         | 5.04                          | 14.10                         | 0.03                        | 0.23                          | >500                          | 0.8                          | 8                          | 1.27                          | 106.5                        | 3.34                       |
| X043208            |                                   | 1.06                               | 0.93                          | 8.94                        | 6.2                          | 2760                        | 2.86                          | 0.40                          | 0.38                        | 3.21                          | 301                           | 1,1                          | 7                          | 4.49                          | 1580                         | 3,93                       |
| X043209            |                                   | 1.34                               | 0.72                          | 8.05                        | 17.6                         | 2370                        | 3.40                          | 0.28                          | 0.54                        | 1.91                          | 260                           | 1.0                          | 6                          | 6.51                          | 151.5                        | 1.19                       |
| X043210            |                                   | 1.04                               | >100                          | 1.51                        | 2710                         | 120                         | 0.99                          | 166.5                         | 0.04                        | 6.08                          | 125.0                         | 0.6                          | 10                         | 1.39                          | 4180                         | 14.05                      |
| X043211            |                                   | 0.94                               | 5.14                          | 6,99                        | 526                          | 620                         | 3.76                          | 16.10                         | 0.20                        | 15.55                         | 328                           | 1.4                          | 8                          | 5.22                          | 890                          | 6,87                       |
| X043212            |                                   | 0.86                               | 5.28                          | 9.36                        | 28.8                         | 2570                        | 3.05                          | 0.43                          | 0.25                        | 2.32                          | 213                           | 0.5                          | 8                          | 4.05                          | 1170                         | 4.27                       |
| X043213            |                                   | 1.30                               | 6.21                          | 10.75                       | 102.0                        | 2070                        | 3,93                          | 0.65                          | 0.06                        | 0.69                          | 419                           | 0.1                          | 7                          | 4.03                          | 349                          | 3.23                       |
| X043214            |                                   | 0.88                               | 79.5                          | 0.68                        | 79.5                         | 260                         | 0.43                          | 153.0                         | 0.04                        | 0.36                          | 33.6                          | 0.7                          | 21                         | 0.39                          | 168.5                        | 2.42                       |
| X043215            |                                   | 1.00                               | >100                          | 0.41                        | 48.7                         | 90                          | 0.33                          | 63.4                          | 0.03                        | 2.14                          | 46.9                          | 2.7                          | 24                         | 0.35                          | 455                          | 1.55                       |
| X043216            |                                   | 0.94                               | 5.13                          | 5.47                        | 146.0                        | 350                         | 3.35                          | 2.58                          | 0.10                        | 0,50                          | 327                           | 0.6                          | 9                          | 2.84                          | 464                          | 4.87                       |
| X043217            |                                   | 1.64                               | 34.0                          | 0.21                        | 24.4                         | 160                         | 0.41                          | 5.81                          | 0.01                        | 0.12                          | 7.63                          | 0.6                          | 32                         | 0.18                          | 145.5                        | 2.50                       |
| X043218            |                                   | 2.52                               | 88.9                          | 0.61                        | 78.6                         | 70                          | 0.34                          | 60.6                          | 0.01                        | 10.15                         | 15.80                         | 3.8                          | 29                         | 0.17                          | 2260                         | 5.91                       |
| X043219            |                                   | 1.70                               | 1.94                          | 6.43                        | 45.6                         | 2160                        | 4.15                          | 1,44                          | 4.82                        | 4.52                          | 434                           | 5.9                          | 9                          | 2.13                          | 183.5                        | 2.26                       |
| X043220            |                                   | 1.62                               | 4.29                          | 0.57                        | 8,4                          | 30                          | 0.59                          | 2.83                          | 0.02                        | 0.58                          | 8.92                          | 0.6                          | 25                         | 0.13                          | 39.0                         | 1.19                       |
| X043221            |                                   | 1.42                               | 28.1                          | 0.48                        | 281                          | 10                          | 0.70                          | 36.2                          | 0.09                        | 59.4                          | 21.8                          | 21.2                         | 31                         | 0.34                          | 2470                         | 7.75                       |
| X043222            |                                   | 0.88                               | 2.48                          | 2.84                        | 9.9                          | 180                         | 2.85                          | 1.75                          | 0.03                        | 0.26                          | 22.0                          | 9.4                          | 22                         | 1.04                          | 21.5                         | 4,33                       |
| X043223            |                                   | 1.18                               | 2.23                          | 6.15                        | 7.2                          | 140                         | 4.65                          | 1.41                          | 0.02                        | 0.13                          | 49.1                          | 3.7                          | 20                         | 1.30                          | 19.6                         | 2.56                       |
| X043224            |                                   | 1.58                               | 3.24                          | 3.79                        | 6.4                          | 160                         | 2.94                          | 0.83                          | 0.03                        | 0.09                          | 14.25                         | 2.2                          | 17                         | 1.63                          | 74.6                         | 5.09                       |
| X043225            |                                   | 1.94                               | 2.49                          | 8.34                        | 5.6                          | 870                         | 4.28                          | 0.95                          | 0.09                        | 0.03                          | 63.9                          | 0.9                          | 11                         | 1.32                          | 5,5                          | 2.00                       |
| X043226            |                                   | 0.58                               | 0.77                          | 7.78                        | 1.2                          | 1900                        | 2.52                          | 1.14                          | 0.19                        | 0.02                          | 146.5                         | 1.3                          | 13                         | 2.70                          | 10.3                         | 2.59                       |
| X043227            |                                   | 1.22                               | 3.23                          | 1.41                        | 7.0                          | 200                         | 1.41                          | 2.02                          | 0.08                        | 0.06                          | 93.6                          | 0.5                          | 39                         | 0.62                          | 18.0                         | 3,12                       |
| V043220            |                                   | 1.08                               | 3.03                          | 7.22                        | 28                           | 2520                        | 1.90                          | 2 11                          | 0.09                        | 0.12                          | 90.7                          | 0.9                          | 11                         | 2.12                          | 29.6                         | 2.61                       |

2520

130

60

1.90

0.46

0.45

2.11

0.49

0.52

0.09

0.01

0.01

0.12

0.03

< 0.02

90.7

13,30

14.95

0.9

0.4

0.5

11

24

46

2.12

0.14

0.21

29.6

11.8

9.9

2,61

1.05

1.48

1.08

1.00

2.02

3.93

9.70

3.06

7.22

0.50

0.43

2.8

1.2

2.9



4977 Energy Way Reno NV 89502 Phone: +1 775 356 5395 Fax: +1 775 355 0179 www.alsglobal.com/geochemistry To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR RENO NV 89501 Page: 3 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018 Account: RECPER

| (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                   |                               |                               |                              |                               |                            |                              |                              | C                           | ERTIFIC                    | CATE O                        | FANAL                       | LYSIS                        | RE180                        | 26217                      |                              |
|-----------------------------------------|-----------------------------------|-------------------------------|-------------------------------|------------------------------|-------------------------------|----------------------------|------------------------------|------------------------------|-----------------------------|----------------------------|-------------------------------|-----------------------------|------------------------------|------------------------------|----------------------------|------------------------------|
| Sample Description                      | Method<br>Analyte<br>Units<br>LOR | ME- MS61<br>Ga<br>ppm<br>0.05 | ME- MS61<br>Ge<br>ppm<br>0.05 | ME- MS61<br>Hf<br>ppm<br>0.1 | ME-MS61<br>In<br>ppm<br>0.005 | ME- MS61<br>K<br>%<br>0.01 | ME- MS61<br>La<br>ppm<br>0.5 | ME- MS61<br>Li<br>ppm<br>0.2 | ME- MS61<br>Mg<br>%<br>0.01 | ME- MS61<br>Mn<br>ppm<br>5 | ME- MS61<br>Mo<br>ppm<br>0.05 | ME- MS61<br>Na<br>%<br>0.01 | ME- MS61<br>Nb<br>ppm<br>0.1 | ME- MS61<br>Ni<br>ppm<br>0,2 | ME- MS61<br>P<br>ppm<br>10 | ME- MS61<br>Pb<br>ppm<br>0.5 |
| X043441                                 |                                   | 0.86                          | 0.06                          | <0.1                         | 0.063                         | 0.13                       | 1.6                          | 10.7                         | 0.02                        | 103                        | 1.96                          | 0.01                        | 0.1                          | 2.0                          | 90                         | 68.2                         |
| X043442                                 |                                   | 22.3                          | 0.16                          | 0.2                          | 0.069                         | 5.29                       | 27.7                         | 16.6                         | 0.74                        | 309                        | 1.91                          | 0.05                        | 6.0                          | 5.0                          | 1070                       | 269                          |
| X043443                                 |                                   | 22.3                          | 0.19                          | 0.2                          | 0.244                         | 4.61                       | 26.2                         | 22.0                         | 0.68                        | 261                        | 3.54                          | 0.06                        | 4.1                          | 2.7                          | 790                        | 742                          |
| X043444                                 |                                   | 19.65                         | 0.36                          | 0.9                          | 2.56                          | 3.86                       | 218                          | 20.7                         | 0.38                        | 129                        | 22.3                          | 0.06                        | 5.9                          | 1.1                          | 820                        | 2440                         |
| X043445                                 |                                   | 4.38                          | 0.11                          | 0.1                          | 3.08                          | 0.43                       | 11.6                         | 10.0                         | 0.03                        | 92                         | 14.95                         | 0.02                        | 0.5                          | 1.7                          | 90                         | 3030                         |
| X043446                                 |                                   | 2.22                          | 0.09                          | <0,1                         | 2.29                          | 0.08                       | 3.8                          | 12.8                         | 0.01                        | 121                        | 9.07                          | 0.01                        | 0,1                          | 2,3                          | 60                         | >10000                       |
| X043447                                 |                                   | 3.04                          | 0.10                          | < 0.1                        | 2.29                          | 0.06                       | 5.1                          | 10.2                         | 0.01                        | 94                         | 7.33                          | 0.02                        | 0.1                          | 1,9                          | 70                         | >10000                       |
| X043448                                 |                                   | 1.36                          | 0.07                          | < 0.1                        | 0.089                         | 0.19                       | 1.4                          | 11.5                         | 0.03                        | 100                        | 4.29                          | 0.01                        | 0.2                          | 1.7                          | 20                         | 989                          |
| X043449                                 |                                   | 5.26                          | 0.08                          | 0.2                          | 0.408                         | 0.34                       | 4.2                          | 9.9                          | 0.04                        | 92                         | 18.35                         | 0.01                        | 1.3                          | 2.0                          | 150                        | 1655                         |
| X043450                                 |                                   | 2.04                          | 0.08                          | < 0.1                        | 3.88                          | 0.10                       | 5.0                          | 8.7                          | 0.01                        | 85                         | 20.7                          | 0.01                        | 0.2                          | 2.0                          | 100                        | 3150                         |
| X043201                                 |                                   | 22.7                          | 0.35                          | 0.4                          | 7.27                          | 4.45                       | 130.5                        | 11.9                         | 0.30                        | 155                        | 11.75                         | 0,06                        | 6.4                          | 1.9                          | 320                        | 1265                         |
| X043202                                 |                                   | 19.30                         | 0.31                          | 0.6                          | 0.219                         | 4.86                       | 181.0                        | 15.7                         | 0.25                        | 98                         | 1.60                          | 0.12                        | 8.0                          | 1.5                          | 660                        | 422                          |
| X043203                                 |                                   | 20.6                          | 0.15                          | 0.7                          | 0.043                         | 4.13                       | 19.8                         | 86.1                         | 0.28                        | 191                        | 0.30                          | 1.13                        | 7.7                          | 7.1                          | 560                        | 33.3                         |
| X043204                                 |                                   | 5.87                          | 0.08                          | 0.1                          | 0.183                         | 0.41                       | 2.4                          | 19.3                         | 0.06                        | 242                        | 29.7                          | 0.01                        | 0.8                          | 2.2                          | 250                        | 524                          |
| X043205                                 |                                   | 2.74                          | 0.07                          | 0.1                          | 0.403                         | 0.20                       | 3.8                          | 10.2                         | 0.03                        | 172                        | 8.77                          | 0.01                        | 0.6                          | 2.2                          | 310                        | 601                          |
| X043206                                 |                                   | 26.3                          | 0.62                          | 8,0                          | 0.385                         | 6.11                       | 288                          | 13.9                         | 0.58                        | 209                        | 3.17                          | 0.07                        | 19.7                         | 1.1                          | 690                        | 106.0                        |
| X043207                                 |                                   | 27.1                          | 0.43                          | 0.7                          | 0.754                         | 4.40                       | 261                          | 17.5                         | 0.69                        | 232                        | 4.22                          | 0.05                        | 17.0                         | 1.0                          | 720                        | 1350                         |
| X043208                                 |                                   | 23.0                          | 0.42                          | 1.0                          | 0.102                         | 5.05                       | 162.5                        | 125.5                        | 0.29                        | 30                         | 2.81                          | 0.17                        | 29.1                         | 4.2                          | 960                        | 182.0                        |
| X043209                                 |                                   | 21.6                          | 0.28                          | 1.0                          | 0.222                         | 3.33                       | 146.0                        | 117.5                        | 0.45                        | 44                         | 1.77                          | 0.05                        | 25.1                         | 5.1                          | 730                        | 144.5                        |
| X043210                                 |                                   | 17.45                         | 0.20                          | 0.2                          | 3.91                          | 2.48                       | 64.6                         | 9.3                          | 0.09                        | 89                         | 58.2                          | 0.12                        | 3.5                          | 1.2                          | 270                        | >10000                       |
| X043211                                 |                                   | 26.0                          | 0.31                          | 0.7                          | 2.55                          | 4.84                       | 177.0                        | 20.3                         | 0.40                        | 86                         | 7.28                          | 0.18                        | 19.0                         | 2.2                          | 640                        | 3280                         |
| X043212                                 |                                   | 23.5                          | 0.22                          | 0.5                          | 0.146                         | 5.55                       | 126.5                        | 18.5                         | 0.25                        | 33                         | 3.29                          | 1.01                        | 25.3                         | 2.5                          | 730                        | 397                          |
| X043213                                 |                                   | 37.7                          | 0.29                          | 0.4                          | 0.392                         | 5.50                       | 254                          | 13.6                         | 0.35                        | 50                         | 1.72                          | 0.15                        | 42.2                         | 0.7                          | 960                        | 1330                         |
| X043214                                 |                                   | 2.44                          | 0.11                          | 0.1                          | 0.698                         | 0.46                       | 21.9                         | 5.7                          | 0.06                        | 92                         | 6.59                          | 0.03                        | 0.9                          | 2.4                          | 170                        | 591                          |
| X043215                                 |                                   | 1.91                          | 0.12                          | 0.1                          | 0.431                         | 0.16                       | 18.5                         | 4.3                          | 0.03                        | 127                        | 9.37                          | 0.01                        | 1.1                          | 2.4                          | 100                        | 494                          |
| X043216                                 |                                   | 21.1                          | 0.27                          | 8.0                          | 1,330                         | 3.06                       | 153.0                        | 26.6                         | 0.42                        | 123                        | 11.30                         | 0.02                        | 13.8                         | 2.0                          | 630                        | 441                          |
| X043217                                 |                                   | 0.86                          | 0.07                          | < 0.1                        | 0.034                         | 0.15                       | 4.9                          | 11.5                         | 0.01                        | 88                         | 12.10                         | 0.03                        | 0.4                          | 2.4                          | 60                         | 1705                         |
| X043218                                 |                                   | 2.18                          | 0.10                          | < 0.1                        | 0.753                         | 0.32                       | 9.2                          | 7.5                          | 0.03                        | 93                         | 3.32                          | 0.01                        | 0.8                          | 4.6                          | 20                         | 2380                         |
| X043219                                 |                                   | 23.9                          | 0.40                          | 0.8                          | 0.090                         | 5.54                       | 178.0                        | 14.2                         | 0.40                        | 904                        | 0.91                          | 0.04                        | 20.5                         | 4.4                          | 550                        | 57.3                         |
| X043220                                 |                                   | 2.88                          | 0.06                          | < 0.1                        | 0.007                         | 0.30                       | 4.5                          | 13.9                         | 0.04                        | 91                         | 9.67                          | 0.01                        | 0.6                          | 1.9                          | 10                         | 748                          |
| X043221                                 |                                   | 2.81                          | 80,0                          | 0,1                          | 1.050                         | 0.22                       | 9.5                          | 23.2                         | 0.06                        | 1720                       | 11.55                         | 0.01                        | 0.7                          | 9.2                          | 30                         | 2000                         |
| X043222                                 |                                   | 9.78                          | 0.08                          | 0.3                          | 0.017                         | 1.62                       | 13.2                         | 15.3                         | 0.26                        | 327                        | 6.98                          | 0.02                        | 2.3                          | 9.2                          | 440                        | 248                          |
| X043223                                 |                                   | 21.9                          | 0.11                          | 0.4                          | 0.036                         | 3.63                       | 28.9                         | 16.5                         | 0.63                        | 304                        | 2.66                          | 0.03                        | 4.8                          | 4.3                          | 400                        | 90.1                         |
| X043224                                 |                                   | 13.95                         | 0.14                          | 0.5                          | 0.047                         | 2.08                       | 6.6                          | 21.4                         | 0.33                        | 143                        | 5.50                          | 0.02                        | 1.9                          | 3.4                          | 260                        | 162.0                        |
| X043225                                 |                                   | 29.2                          | 0.21                          | 0.2                          | 0.026                         | 4.51                       | 31.0                         | 21.2                         | 0.46                        | 106                        | 0.46                          | 1.41                        | 6.9                          | 3.9                          | 160                        | 27.4                         |
| X043226                                 |                                   | 21.4                          | 0.30                          | 0,6                          | 0.041                         | 4.77                       | 63.5                         | 15.4                         | 0.63                        | 403                        | 0.82                          | 0.95                        | 6.9                          | 4.2                          | 580                        | 21.4                         |
| X043227                                 |                                   | 5.85                          | 0.18                          | 0.3                          | 0.020                         | 1.14                       | 79.8                         | 8.8                          | 0.12                        | 103                        | 11.75                         | 0.08                        | 4.2                          | 1.8                          | 480                        | 195.0                        |
| X043228                                 |                                   | 16.95                         | 0.35                          | 0.6                          | 0.049                         | 4.80                       | 35.4                         | 8.1                          | 0.14                        | 97                         | 1.96                          | 1.72                        | 21.3                         | 2.7                          | 640                        | 36.1                         |
| X043229                                 |                                   | 1.89                          | 0.10                          | 0.1                          | < 0.005                       | 0.27                       | 7.2                          | 8,6                          | 0.03                        | 89                         | 2.67                          | 0.01                        | 0,9                          | 1.9                          | 60                         | 14.5                         |
| X043230                                 |                                   | 2.03                          | 0.07                          | < 0.1                        | 0.007                         | 0.22                       | 7.0                          | 15.8                         | 0.03                        | 81                         | 3.22                          | 0.01                        | 0.5                          | 1.8                          | 60                         | 12.6                         |



4977 Energy Way Reno NV 89502

Phone: +1 775 356 5395 Fax: +1 775 355 0179 www.alsglobal.com/geochemistry

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR **RENO NV 89501** 

Page: 3 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018 Account: RECPER

| (763)              |                                   |                              |                                |                            |                               |                              |                            |                              | C                           | ERTIFI(                       | CATE O                        | FANAL                         | YSIS                         | RE180                         | 26217                       |                      |
|--------------------|-----------------------------------|------------------------------|--------------------------------|----------------------------|-------------------------------|------------------------------|----------------------------|------------------------------|-----------------------------|-------------------------------|-------------------------------|-------------------------------|------------------------------|-------------------------------|-----------------------------|----------------------|
| Sample Description | Method<br>Analyte<br>Units<br>LOR | ME- MS61<br>Rb<br>ppm<br>0.1 | ME- MS61<br>Re<br>ppm<br>0.002 | ME- MS61<br>S<br>%<br>0.01 | ME- MS61<br>Sb<br>ppm<br>0.05 | ME- MS61<br>Sc<br>ppm<br>0.1 | ME- MS61<br>Se<br>ppm<br>1 | ME- MS61<br>Sn<br>ppm<br>0.2 | ME-MS61<br>Sr<br>ppm<br>0.2 | ME- MS61<br>Ta<br>ppm<br>0.05 | ME- MS61<br>Te<br>ppm<br>0.05 | ME- MS61<br>Th<br>ppm<br>0.01 | ME- MS61<br>Ti<br>%<br>0.005 | ME- MS61<br>TI<br>ppm<br>0.02 | ME- MS61<br>U<br>ppm<br>0.1 | ME- MS61<br>V<br>ppm |
| X043441            |                                   | 7.8                          | <0.002                         | 0.04                       | 1.06                          | 0.4                          | 1.                         | 0.2                          | 7.3                         | <0.05                         | 0.72                          | 0.16                          | 0.008                        | 0.04                          | 0.4                         | 4                    |
| X043442            |                                   | 350                          | < 0.002                        | 0.25                       | 2.00                          | 19.3                         | 2                          | 1.6                          | 50.8                        | 0.35                          | 0.38                          | 3.01                          | 0.396                        | 1.87                          | 2.8                         | 104                  |
| X043443            |                                   | 322                          | < 0.002                        | 0.49                       | 1.04                          | 16.8                         | 2                          | 2.3                          | 123.5                       | 0.18                          | 3.84                          | 1.77                          | 0.347                        | 1.63                          | 1.7                         | 123                  |
| X043444            |                                   | 207                          | < 0.002                        | 1.40                       | 2.99                          | 7.1                          | 3                          | 4.1                          | 863                         | 0.31                          | 10.05                         | 19.00                         | 0.254                        | 1.12                          | 1.3                         | 47                   |
| X043445            |                                   | 21.1                         | < 0.002                        | 0.38                       | 2.77                          | 0.9                          | 3                          | 1.0                          | 59.5                        | < 0.05                        | 6.62                          | 1.01                          | 0.019                        | 0.11                          | 0.5                         | 7                    |
| X043446            |                                   | 5.2                          | < 0.002                        | 0.68                       | 13.10                         | 1.3                          | 3                          | 0.6                          | 8.5                         | < 0.05                        | 9.53                          | 0,41                          | < 0.005                      | 0.04                          | 1.1                         | 4                    |
| X043447            |                                   | 4.2                          | < 0.002                        | 1.41                       | 21.3                          | 1.3                          | 3                          | 0.7                          | 8.1                         | < 0.05                        | 11.05                         | 0.37                          | < 0.005                      | 0.03                          | 1.0                         | 2                    |
| X043448            |                                   | 13.6                         | < 0.002                        | 0.10                       | 4.53                          | 0.2                          | 1                          | 0.5                          | 5.1                         | < 0.05                        | 6.10                          | 0.10                          | 0.011                        | 0.07                          | 0.2                         | 5                    |
| X043449            |                                   | 20.6                         | < 0.002                        | 0.40                       | 29.4                          | 1.9                          | 1                          | 1.1                          | 28.7                        | < 0.05                        | 21.1                          | 0.41                          | 0.204                        | 0.11                          | 1.3                         | 50                   |
| X043450            |                                   | 5.8                          | < 0.002                        | 0.30                       | 58.1                          | 0.5                          | 3                          | 1.2                          | 8.4                         | < 0.05                        | 63.1                          | 1.43                          | 0.007                        | 0.03                          | 0.8                         | 11                   |
| X043201            |                                   | 202                          | <0.002                         | 0.44                       | 3.89                          | 4.6                          | 1                          | 4.3                          | 146.0                       | 0.35                          | 18.15                         | 10.55                         | 0.208                        | 1.03                          | 1.4                         | 45                   |
| X043202            |                                   | 183.0                        | < 0.002                        | 0.34                       | 1.81                          | 6.6                          | 1                          | 4.9                          | 422                         | 0.42                          | 1.06                          | 19.15                         | 0.249                        | 1.46                          | 1.8                         | 49                   |
| X043203            |                                   | 181.5                        | < 0.002                        | 0.01                       | 1.91                          | 4.6                          | 1                          | 0.9                          | 306                         | 0.48                          | 0.10                          | 3.31                          | 0.224                        | 0.92                          | 1.5                         | 45                   |
| X043204            |                                   | 31.2                         | <0.002                         | 0.05                       | 6.52                          | 2.1                          | 1                          | 0.9                          | 37.9                        | < 0.05                        | 2.83                          | 0.62                          | 0.027                        | 0.17                          | 4.3                         | 47                   |
| X043205            |                                   | 13.4                         | < 0.002                        | 0.10                       | 57.7                          | 0.7                          | 1                          | 0.9                          | 57.7                        | < 0.05                        | 19.60                         | 0.40                          | 0.017                        | 0.07                          | 4.8                         | 19                   |
| X043206            |                                   | 294                          | <0.002                         | 0.37                       | 6.16                          | 10.8                         | 2                          | 4.5                          | 186.0                       | 1,61                          | 1.90                          | 22.8                          | 0.310                        | 1.95                          | 3.3                         | 44                   |
| X043207            |                                   | 305                          | 0.003                          | 0.71                       | 11.55                         | 9.7                          | 4                          | 5.5                          | 105.5                       | 1.44                          | 3.88                          | 18.10                         | 0.284                        | 1.54                          | 2.9                         | 58                   |
| X043207            |                                   | 185.0                        | <0.002                         | 0.23                       | 1.71                          | 10.7                         | 1                          | 5.2                          | 1255                        | 2.36                          | 0.13                          | 32.6                          | 0.497                        | 1.44                          | 46.3                        | 50                   |
| X043209            |                                   | 206                          | < 0.002                        | 0.52                       | 1.82                          | 6.6                          | 1                          | 4.7                          | 962                         | 2.05                          | 0.28                          | 17.75                         | 0.413                        | 1.15                          | 4.8                         | 46                   |
| X043210            |                                   | 127.0                        | 0.003                          | 4.64                       | 47.2                          | 2.1                          | 3                          | 1.1                          | 166.5                       | 0.28                          | 55.3                          | 5.54                          | 0.057                        | 0.73                          | 9.0                         | 40                   |
| X043211            |                                   | 275                          | 0.002                          | 3.04                       | 12.00                         | 8.2                          | 3                          | 5.0                          | 618                         | 1.60                          | 10.90                         | 19.95                         | 0.268                        | 1.44                          | 6.7                         | 47                   |
| X043211<br>X043212 |                                   | 216                          | < 0.002                        | 0.35                       | 2.83                          | 9.8                          | 1                          | 6.6                          | 632                         | 2.31                          | 0.79                          | 34.9                          | 0.383                        | 1.79                          | 34.0                        | 38                   |
| X043212            |                                   | 217                          | < 0.002                        | 0.91                       | 3.05                          | 14.4                         | 1                          | 12.2                         | 744                         | 4.18                          | 3.28                          | 44.2                          | 0.466                        | 2.45                          | 4.3                         | 73                   |
| X043214            |                                   | 25.4                         | < 0.002                        | 0.50                       | 4.79                          | 1.0                          | 2                          | 1.4                          | 28.2                        | 0.07                          | 7.18                          | 1.62                          | 0.017                        | 0.14                          | 1.0                         | 11                   |
| X043214<br>X043215 |                                   | 10.7                         | < 0.002                        | 0.49                       | 25.3                          | 0.7                          | 3                          | 0.8                          | 15.1                        | 0.09                          | 7.46                          | 1.20                          | 0.018                        | 0.07                          | 1.9                         | 10                   |
| X043216            |                                   | 202                          | <0.002                         | 0.29                       | 17.25                         | 5.8                          | 2                          | 3.6                          | 456                         | 1.12                          | 7.05                          | 15.35                         | 0.237                        | 1.00                          | 3.5                         | 43                   |
| X043216<br>X043217 |                                   | 6.9                          | < 0.002                        | 0.54                       | 5.01                          | 0.3                          | 2                          | 0.2                          | 19.1                        | <0.05                         | 1.97                          | 0.55                          | 0.007                        | 0.05                          | 0.8                         | 7                    |
| X043217            |                                   | 20.8                         | < 0.002                        | 6.41                       | 9.57                          | 0.4                          | 1                          | 0.8                          | 13.0                        | 0.11                          | 12.40                         | 1.24                          | 0.010                        | 0.10                          | 0.2                         | 8                    |
| X043219            |                                   | 272                          | < 0.002                        | 1.22                       | 4.36                          | 7.8                          | 1                          | 4.2                          | 410                         | 1,65                          | 0.42                          | 18.10                         | 0.308                        | 1.80                          | 3.0                         | 46                   |
| X043219            |                                   | 21.6                         | < 0.002                        | 0.61                       | 2.95                          | 0.4                          | 1                          | 0.6                          | 9.4                         | 0.06                          | 1.21                          | 0.47                          | 0.010                        | 0.09                          | 0.1                         | 13                   |
| X043221            |                                   | 15.5                         | 0.002                          | 2.33                       | 13.70                         | 1.3                          | 2                          | 1.2                          | 20.8                        | 0.05                          | 4.58                          | 0.93                          | 0.011                        | 0.07                          | 17.0                        | 16                   |
| X043221            |                                   | 129.5                        | < 0.002                        | 0.11                       | 2.32                          | 2.5                          | 3                          | 0.9                          | 70.6                        | 0.12                          | 0.99                          | 1.20                          | 0.125                        | 0.64                          | 7.2                         | 38                   |
| X043222<br>X043223 |                                   | 279                          | < 0.002                        | 0.09                       | 1.38                          | 5.7                          | 1                          | 1.6                          | 52.9                        | 0.25                          | 1.35                          | 2.75                          | 0.286                        | 1,39                          | 4.3                         | 76                   |
| X043224            |                                   | 176.5                        | <0.002                         | 0.05                       | 3.04                          | 4.5                          | 1                          | 1.5                          | 77.0                        | 0.10                          | 1.36                          | 0.98                          | 0.095                        | 0.71                          | 2,9                         | 64                   |
| X043224<br>X043225 |                                   | 277                          | <0.002                         | 0.26                       | 5.27                          | 7.6                          | 1                          | 2.3                          | 142.0                       | 0.34                          | 1.88                          | 2.06                          | 0.451                        | 1.53                          | 1.2                         | 102                  |
| X043226            |                                   | 192.0                        | <0.002                         | 0.39                       | 0.37                          | 7.2                          | 1                          | 1.8                          | 528                         | 0.36                          | 2.23                          | 3.33                          | 0,400                        | 2.14                          | 2.5                         | 88                   |
| X043227            |                                   | 86.1                         | <0.002                         | 0.85                       | 1.09                          | 3.6                          | 1                          | 1.3                          | 99.5                        | 0.22                          | 2.35                          | 3.08                          | 0.195                        | 0.41                          | 1.3                         | 33                   |
| X043227<br>X043228 |                                   | 168.5                        | <0.002                         | 0.09                       | 0.64                          | 7.8                          | 3                          | 4.1                          | 606                         | 1.79                          | 2.54                          | 20.3                          | 0.355                        | 1.40                          | 4.7                         | 37                   |
| X043229            |                                   | 18.4                         | < 0.002                        | 0.03                       | 1.13                          | 0.8                          | 4                          | 0.5                          | 8.9                         | 0.06                          | 2.67                          | 0.78                          | 0.027                        | 0.09                          | 0.8                         | 10                   |
| AUTJEEJ            |                                   | 16.8                         | <0.002                         | 0.08                       | 1.61                          | 0.6                          |                            | 0.8                          | 11.3                        | < 0.05                        | 1.44                          | 0.99                          | 0.014                        | 0.09                          | -,-                         | 9                    |



4977 Energy Way Reno NV 89502 Phone: +1 775 356 5395 Fax: +1 775 355 0179 www.alsglobal.com/geochemistry

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR **RENO NV 89501** 

Page: 3 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018

Account: RECPER

| CEDTIE | ICATE | OF | ANALYSIS | DET | 8026217 |  |
|--------|-------|----|----------|-----|---------|--|
| CENTIF | LAIL  | UF | ANALISIS | NEI | 0020217 |  |

| Sample Description | Method<br>Analyte<br>Units<br>LOR | ME- MS61<br>W<br>ppm<br>0.1 | ME- MS61<br>Y<br>ppm<br>0.1 | ME- MS61<br>Zn<br>ppm<br>2 | ME-MS61<br>Zr<br>ppm<br>0.5 | Ag- OG62<br>Ag<br>ppm<br>1 | Cu- OG62<br>Cu<br>%<br>0.001 | Pb- OG62<br>Pb<br>%<br>0.001 | Zn- OG62<br>Zn<br>%<br>0.001 | Au-ICP21<br>Au<br>ppm<br>0.001 | Au- GRA21<br>Au<br>ppm<br>0.05 |
|--------------------|-----------------------------------|-----------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|------------------------------|------------------------------|------------------------------|--------------------------------|--------------------------------|
| X043441            |                                   | 0,5                         | 0.6                         | 214                        | <0.5                        |                            |                              |                              |                              | 0.026                          |                                |
| X043442            |                                   | 48.5                        | 10.4                        | 2010                       | 4.0                         |                            |                              |                              |                              | 0.018                          |                                |
| X043443            |                                   | 32.8                        | 4.3                         | 575                        | 4.0                         |                            |                              |                              |                              | 0.090                          |                                |
| X043444            |                                   | 21.3                        | 8.9                         | 248                        | 25.5                        |                            |                              |                              |                              | 0.073                          |                                |
| X043445            |                                   | 1.7                         | 1.0                         | 120                        | 1.8                         |                            |                              |                              |                              | 0.183                          |                                |
| X043446            |                                   | 0.2                         | 1.6                         | 543                        | 0.7                         |                            |                              | 3.38                         |                              | 0.327                          |                                |
| X043447            |                                   | 0.2                         | 2.0                         | 404                        | 0.7                         |                            | 1.315                        | 9.20                         |                              | 0.477                          |                                |
| X043448            |                                   | 1.4                         | 0.3                         | 19                         | 0.5                         |                            |                              |                              |                              | 0.966                          |                                |
| X043449            |                                   | 19.9                        | 1.5                         | 79                         | 5.3                         |                            |                              |                              |                              | 0.198                          |                                |
| X043450            |                                   | 0.6                         | 0.7                         | 143                        | 0.7                         | 226                        |                              |                              |                              | 0.595                          |                                |
| X043201            |                                   | 25.7                        | 7.8                         | 102                        | 8.8                         |                            |                              |                              |                              | 0.161                          |                                |
| X043202            |                                   | 16.8                        | 11.3                        | 658                        | 11.7                        |                            |                              |                              |                              | 0.042                          |                                |
| X043203            |                                   | 4.6                         | 8.3                         | 5310                       | 21.0                        |                            |                              |                              |                              | 0.002                          |                                |
| X043204            |                                   | 2.5                         | 0.8                         | 266                        | 2.2                         |                            |                              |                              |                              | 0.118                          |                                |
| X043205            |                                   | 1.7                         | 0.9                         | 387                        | 1.5                         |                            |                              |                              |                              | 0.647                          |                                |
| X043206            |                                   | 17.5                        | 35.1                        | 119                        | 17.0                        |                            |                              |                              |                              | 0.060                          |                                |
| X043207            |                                   | 16.0                        | 11.0                        | 104                        | 14.9                        |                            |                              |                              |                              | 0.075                          |                                |
| X043208            |                                   | 5.2                         | 27.1                        | 298                        | 18.5                        |                            |                              |                              |                              | 0.003                          |                                |
| X043209            |                                   | 11.3                        | 9.3                         | 248                        | 24.5                        |                            |                              |                              |                              | 0.008                          |                                |
| X043210            |                                   | 2.3                         | 4.0                         | 333                        | 7.5                         | 106                        |                              | 3.29                         |                              | 1.280                          |                                |
| X043211            |                                   | 25.5                        | 11.8                        | 1200                       | 16.3                        |                            |                              |                              |                              | 0.041                          |                                |
| X043212            |                                   | 41.9                        | 14.8                        | 961                        | 12.3                        |                            |                              |                              |                              | 0.027                          |                                |
| X043213            | - U                               | 49.6                        | 12.9                        | 203                        | 8.0                         |                            |                              |                              |                              | 0.032                          |                                |
| X043214            |                                   | 1.1                         | 3.2                         | 145                        | 2.3                         |                            |                              |                              |                              | 0.896                          |                                |
| X043215            |                                   | 1.5                         | 5.4                         | 431                        | 4.2                         | 147                        |                              |                              |                              | 1.160                          |                                |
| X043216            |                                   | 12.4                        | 9.4                         | 169                        | 20.5                        |                            |                              |                              |                              | 0.069                          |                                |
| X043217            |                                   | 0.6                         | 0.6                         | 83                         | 1.1                         |                            |                              |                              |                              | 0.530                          |                                |
| X043218            |                                   | 0.5                         | 1.0                         | 1220                       | 1.3                         |                            |                              |                              |                              | 0.398                          |                                |
| X043219            |                                   | 40.8                        | 27.0                        | 353                        | 16.2                        |                            |                              |                              |                              | 0.028                          |                                |
| X043220            |                                   | 0.6                         | 0.4                         | 103                        | 0.8                         |                            |                              |                              |                              | 0.108                          |                                |
| X043221            |                                   | 2.0                         | 8.1                         | >10000                     | 1.6                         |                            |                              |                              | 2.71                         | 0,107                          |                                |
| X043222            |                                   | 12.9                        | 3.5                         | 231                        | 9.2                         |                            |                              |                              |                              | 0.055                          |                                |
| X043223            | 100                               | 23.4                        | 5.8                         | 74                         | 9.9                         |                            |                              |                              |                              | 0.055                          |                                |
| X043224            |                                   | 9.9                         | 1,4                         | 117                        | 8.1                         |                            |                              |                              |                              | 0.050                          |                                |
| X043225            |                                   | 15.5                        | 4.8                         | 36                         | 5.5                         |                            |                              |                              |                              | 0.013                          |                                |
| X043226            |                                   | 5.0                         | 6.1                         | 45                         | 12.5                        |                            |                              |                              |                              | 0.013                          |                                |
| X043227            |                                   | 11.9                        | 4.3                         | 21                         | 6.1                         |                            |                              |                              |                              | 0.083                          |                                |
| X043228            |                                   | 3.5                         | 13.8                        | 21                         | 11.2                        |                            |                              |                              |                              | 0.039                          |                                |
| X043229            |                                   | 1.3                         | 0,6                         | 11                         | 1.0                         |                            |                              |                              |                              | 0.043                          |                                |
| X043230            |                                   | 1.0                         | 2.4                         | 6                          | 1.7                         |                            |                              |                              |                              | 0.133                          |                                |



4977 Energy Way Reno NV 89502 Phone: +1 775 356 5395 Fax: +1 775 355 0179 www.alsglobal.com/geochemistry

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR **RENO NV 89501** 

Page: 4 - A Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018

RE18026217

Account: RECPER

Project: NEW ENTERPRISE

**CERTIFICATE OF ANALYSIS** 

| X043232<br>X043233<br>X043234<br>X043235<br>X043236<br>X043237<br>X043238<br>X043239<br>X043240 | 0.76 1<br>0.68 4<br>1.38 1<br>1.00 6<br>1.78 1<br>1.66 1<br>1.64 1 | 3.14 4.97<br>3.05 7.88<br>48.2 0.17<br>2.35 0.39<br>0.39 8.70<br>6.04 7.77<br>2.06 9.67 | 3.6<br>208<br>421<br>392<br>6.4 | 1030<br>2740<br>150<br>50 | 2.10<br>2.53<br>0.27 | 1.96<br>7.09 | 0.06<br>0.05 | <0.02 | 37.0  | 0.8  | 50 | 0.81  | 8.7   | 4.42  |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------|---------------------------|----------------------|--------------|--------------|-------|-------|------|----|-------|-------|-------|
| X043233<br>X043234<br>X043235<br>X043236<br>X043237<br>X043238<br>X043239<br>X043240            | 0.68<br>1.38<br>1.00<br>1.78<br>1.66<br>1.64                       | 48.2 0.17<br>2.35 0.39<br>0.39 8.70<br>6.04 7.77                                        | 421<br>392<br>6.4               | 150                       |                      |              | 0.05         |       |       |      |    |       |       |       |
| X043234<br>X043235<br>X043236<br>X043237<br>X043238<br>X043239<br>X043240                       | 1.38 1<br>1.00 0<br>1.78 0<br>1.66 3<br>1.64 1                     | 2.35 0.39<br>0.39 8.70<br>6.04 7.77                                                     | 392<br>6.4                      |                           | 0.27                 |              |              | 1.70  | 146.5 | 1.0  | 9  | 1.51  | 413   | 2.70  |
| X043235<br>X043236<br>X043237<br>X043238<br>X043239<br>X043240                                  | 1.00 0<br>1.78 0<br>1.66 3<br>1.64 1                               | 0.39 8.70<br>6.04 7.77                                                                  | 6.4                             | 50                        |                      | 15.05        | 0.01         | 1.74  | 7.08  | 0.5  | 27 | 0.16  | 299   | 2.18  |
| X043236<br>X043237<br>X043238<br>X043239<br>X043240                                             | 1.78<br>1.66<br>1.64                                               | 6.04 7.77                                                                               |                                 | 77666                     | 0.34                 | 2.96         | 0.02         | 1.84  | 406   | 21.1 | 29 | 0.18  | 702   | 2.95  |
| X043237<br>X043238<br>X043239<br>X043240                                                        | 1.66 3<br>1.64 1                                                   |                                                                                         | 40.0                            | 1230                      | 1.86                 | 0.17         | 2,37         | 1.13  | 74.3  | 13.2 | 18 | 1.66  | 53.8  | 3.76  |
| X043237<br>X043238<br>X043239<br>X043240                                                        | 1.64 1                                                             | 2 06 9 67                                                                               | 18.3                            | 490                       | 5.79                 | 4.53         | 0.11         | 1.01  | 37.4  | 0.4  | 46 | 2,90  | 283   | 4.91  |
| X043238<br>X043239<br>X043240                                                                   |                                                                    |                                                                                         | 11.0                            | 1610                      | 5.29                 | 0.35         | 1.52         | 10.75 | 35.8  | 22.8 | 39 | 9.45  | 992   | 6.66  |
| X043239<br>X043240                                                                              | 1.00                                                               | 2.35 1.02                                                                               | 37.5                            | 370                       | 0.87                 | 5.81         | 0.03         | 1.04  | 12.40 | 1.0  | 28 | 0.50  | 269   | 2.45  |
| X043240                                                                                         |                                                                    | 7.25 4.74                                                                               | 36.4                            | 910                       | 3.08                 | 2.84         | 0.13         | 0.56  | 241   | 0.3  | 11 | 2.67  | 308   | 3.18  |
| X043241                                                                                         | 1.10                                                               | 1.65 5.06                                                                               | 25.0                            | 2160                      | 1.93                 | 3.03         | 1.80         | 11.75 | 80,8  | 4.0  | 11 | 1.76  | 195.0 | 2.51  |
|                                                                                                 | 1.38                                                               | 0.29 7.88                                                                               | 4.8                             | 2300                      | 1,63                 | 1.21         | 0.33         | 2.50  | 470   | 8.5  | 9  | 1.98  | 45.6  | 2.86  |
| X043242                                                                                         |                                                                    | 8.24 2.60                                                                               | 188.0                           | 1940                      | 3.43                 | 9.96         | 0.09         | 32.6  | 20.7  | 1.7  | 19 | 2.17  | 2850  | 18,80 |
| 110 132 12                                                                                      |                                                                    | 6.00 1.13                                                                               | 657                             | 130                       | 0.87                 | 4.35         | 0.02         | 0.78  | 10.35 | 0.4  | 31 | 1.00  | 338   | 4.59  |
|                                                                                                 |                                                                    | >100 0.48                                                                               | 9620                            | 130                       | 0.38                 | 510          | 0.01         | 1.20  | 9.43  | 0.6  | 23 | 0.48  | 2860  | 10.55 |
|                                                                                                 | 2.14                                                               | >100 2.54                                                                               | 2420                            | 2030                      | 2.03                 | 33.7         | 0.02         | 3.66  | 8.66  | 0.5  | 21 | 0.47  | 4120  | 3.67  |
| X043246                                                                                         | 1.76                                                               | 24.6 4.75                                                                               | 2030                            | 870                       | 3.37                 | 44.4         | 0.11         | 11.05 | 36.6  | 1.7  | 33 | 1.80  | 1590  | 11.80 |
|                                                                                                 |                                                                    | 8.95 6.52                                                                               | 758                             | 620                       | 4.75                 | 2.25         | 0.05         | 3.04  | 65.9  | 0.4  | 15 | 1.83  | 173.0 | 3.39  |
|                                                                                                 |                                                                    | 97.1 1.02                                                                               | 1315                            | 740                       | 0.91                 | 29.9         | 0.02         | 2.13  | 20.6  | 0.5  | 21 | 0.29  | 3580  | 6.30  |
|                                                                                                 | 1.20                                                               | 30.9 2.95                                                                               | 113.5                           | 970                       | 16.30                | 48.0         | 0.04         | 0.35  | 11.80 | 0.7  | 28 | 0.44  | 96.2  | 3,31  |
|                                                                                                 | 1.64                                                               | 33.0 2.12                                                                               | 97.5                            | 530                       | 1,79                 | 11.95        | 0.01         | 0.49  | 10.50 | 0.6  | 30 | 0.45  | 185.0 | 2.69  |
| 300.00.00                                                                                       | 1.12                                                               | 0.49 7.48                                                                               | 6.8                             | 1120                      | 4.53                 | 0.26         | 3.29         | 0.33  | 47.1  | 12.6 | 18 | 6.14  | 42.1  | 3.45  |
| 110.100.001                                                                                     | ALC: NO.                                                           | 0.89 8.99                                                                               | 11.3                            | 1540                      | 3.66                 | 1.07         | 1.47         | 11.00 | 74.0  | 16.7 | 18 | 5.06  | 108.0 | 4.14  |
| 110.10.00                                                                                       |                                                                    | 30.8 0.14                                                                               | 2070                            | 40                        | 0.27                 | 4.23         | 0.05         | 198.5 | 0.81  | 3.4  | 15 | 0.08  | 7060  | 1.59  |
| 11013233                                                                                        |                                                                    | 4.59 8.49                                                                               | 34.6                            | 1310                      | 5.60                 | 2.44         | 0.04         | 2.11  | 470   | 0.4  | 10 | 10.85 | 242   | 1.92  |
| 10.0251                                                                                         |                                                                    | 4.81 7.75                                                                               | 33.6                            | 1600                      | 4.62                 | 15.80        | 0.05         | 3,25  | 382   | 1.3  | 7  | 7.65  | 643   | 6.61  |
|                                                                                                 | 1.22                                                               | >100 0.21                                                                               | 1480                            | 320                       | 0.21                 | 92.9         | 0.02         | 2.11  | 7.20  | 0.3  | 22 | 0.10  | 4090  | 1.98  |
| A043230                                                                                         | 1 the fee                                                          | 100                                                                                     |                                 | 100                       |                      |              |              |       |       |      |    |       |       |       |



ALS USA Inc.

4977 Energy Way
Reno NV 89502
Phone: +1 775 356 5395 Fax: +1 775 355 0179
www.alsglobal.com/geochemistry

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR RENO NV 89501 Page: 4 - B Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018 Account: RECPER

| (ALS               | ,       |          |          |          |          |          |          |          | С        | ERTIFIC  | CATE O   | F ANAI   | YSIS     | RE180    | 26217    |         |
|--------------------|---------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---------|
| Sample Description | Method  | ME- MS61 | ME- MS6 |
|                    | Analyte | Ga       | Ge       | Hf       | In       | K        | La       | Li       | Mg       | Mn       | Mo       | Na       | Nb       | Ni       | P        | Pb      |
|                    | Units   | ppm      | ppm      | ppm      | ppm      | %        | ppm      | ppm      | %        | ppm      | ppm      | %        | ppm      | ppm      | ppm      | ppm     |
|                    | LOR     | 0.05     | 0.05     | 0.1      | 0.005    | 0.01     | 0.5      | 0.2      | 0.01     | 5        | 0.05     | 0.01     | 0.1      | 0.2      | 10       | 0.5     |
| X043231            |         | 14.25    | 0.29     | 0.5      | 0.068    | 5.49     | 15.6     | 10.5     | 0.25     | 94       | 5.92     | 0.06     | 8.1      | 2.8      | 290      | 41.4    |
| X043232            |         | 19.85    | 0.42     | 0.4      | 0.437    | 6.34     | 76.1     | 46.9     | 0.27     | 76       | 2.98     | 0.10     | 11.5     | 2.1      | 550      | 221     |
| X043233            |         | 0.81     | 0.11     | <0.1     | 0.634    | 0.15     | 8.0      | 8.8      | 0.01     | 99       | 3.77     | 0.03     | 0.2      | 2.2      | 110      | 2020    |
| X043234            |         | 1.99     | 0.09     | <0.1     | 1.250    | 0.06     | 14.0     | 20.3     | 0.01     | 406      | 9.64     | 0.02     | 0.2      | 3.0      | 100      | 948     |
| X043235            |         | 23.3     | 0.27     | 0.3      | 0.057    | 2.27     | 35.1     | 24.0     | 1.19     | 533      | 0.82     | 3.16     | 6.6      | 16.9     | 1300     | 26.7    |
| X043236            |         | 25,9     | 0.26     | 0.5      | 0.174    | 4,32     | 17.0     | 27.2     | 0.76     | 263      | 3.90     | 0.05     | 9.7      | 1.2      | 270      | 707     |
| X043237            |         | 23.1     | 0.29     | 0.3      | 0.083    | 3.71     | 15.5     | 44.3     | 0.81     | 1190     | 2.05     | 1.22     | 10.5     | 15.7     | 1520     | 153.0   |
| X043238            |         | 4.37     | 0.10     | 0.1      | 0.182    | 0.50     | 6.9      | 17.1     | 0.08     | 131      | 5.52     | 0.02     | 0.5      | 2.2      | 150      | 656     |
| X043239            |         | 15.85    | 0.35     | 0.7      | 0.120    | 2.58     | 108.0    | 19.0     | 0.36     | 117      | 11.55    | 0.03     | 11.2     | 1.1      | 420      | 3830    |
| X043240            |         | 11.35    | 0.30     | 0.1      | 0.418    | 4.51     | 42.1     | 14.3     | 0.20     | 779      | 6.26     | 0.04     | 6,9      | 4.1      | 220      | 23.6    |
| X043241            |         | 17.85    | 0.60     | 0.5      | 0.073    | 5.55     | 161.0    | 11.7     | 0.14     | 244      | 1.63     | 2.42     | 20.0     | 4.8      | 900      | 30.0    |
| X043242            |         | 7.34     | 0.22     | 0.3      | 3.00     | 1.07     | 9.8      | 13.8     | 0.16     | 125      | 16.40    | 0.03     | 1.5      | 6.1      | 460      | 981     |
| X043243            |         | 6.62     | 0.14     | 0.2      | 0.637    | 1.03     | 4.9      | 16.2     | 0.07     | 91       | 28.7     | 0.02     | 0.8      | 2.2      | 200      | 3370    |
| X043244            |         | 10.45    | 0.15     | <0.1     | 11.45    | 1.36     | 4.6      | 11.0     | 0.01     | 71       | 20.3     | 0.08     | 0.5      | 1.7      | 210      | >10000  |
| X043245            |         | 11.35    | 0.11     | 0.3      | 1.250    | 1.40     | 4.0      | 14.2     | 0.23     | 147      | 18,15    | 0.01     | 2.0      | 2.0      | 230      | >10000  |
| X043246            |         | 13.50    | 0.19     | 0.2      | 6.24     | 2.57     | 19.9     | 18.7     | 0.37     | 122      | 9.72     | 0.04     | 4.0      | 4.8      | 820      | 757     |
| X043247            |         | 20.8     | 0.29     | 0.3      | 1.085    | 3.96     | 30.9     | 24.7     | 0.57     | 149      | 3.59     | 0.05     | 4.6      | 2.2      | 830      | 4470    |
| X043248            |         | 4.16     | 0.13     | <0.1     | 5.01     | 0.44     | 11.0     | 11.0     | 0.07     | 94       | 9.66     | 0.01     | 0.6      | 1.8      | 390      | 9850    |
| X043249            |         | 10.40    | 0.13     | 0.1      | 0.471    | 2.03     | 5.9      | 12.2     | 0.29     | 169      | 10.65    | 0.02     | 2.5      | 1.4      | 200      | 456     |
| X043250            |         | 8.08     | 0.12     | 0.1      | 0.528    | 1.22     | 5.4      | 8.4      | 0.21     | 122      | 10.80    | 0.02     | 2.1      | 1.5      | 140      | 571     |
| X043251            |         | 22.4     | 0.25     | 0.3      | 0.054    | 3,40     | 19,4     | 35.3     | 1.01     | 699      | 6.10     | 1.84     | 6.4      | 16.2     | 1260     | 28.3    |
| X043252            |         | 24.7     | 0.31     | 0.4      | 0.116    | 3,88     | 36.1     | 38.7     | 1.32     | 843      | 0.36     | 2.57     | 6.4      | 19.1     | 1370     | 55.9    |
| X043253            |         | 0.75     | 0.08     | <0.1     | 0.496    | 0,05     | <0.5     | 12.3     | 0.01     | 75       | 2.23     | 0.02     | 0.1      | 2.9      | 140      | >10000  |
| X043254            |         | 25.5     | 0.51     | 0.6      | 0.124    | 4,34     | 234      | 25.6     | 0.44     | 55       | 6.33     | 0.03     | 25.1     | 1.4      | 1290     | 819     |
| X043255            |         | 22.0     | 0.48     | 0.6      | 1.165    | 4,50     | 190.5    | 30.3     | 0.40     | 71       | 9.97     | 0.11     | 20.7     | 2.1      | 920      | 1675    |
| X043256            |         | 1.29     | 0.08     | <0.1     | 0.701    | 0.12     | 4.7      | 7.9      | 0.01     | 82       | 4.09     | 0.01     | 0.1      | 1.7      | 110      | >10000  |



4977 Energy Way Reno NV 89502 Phone: +1 775 356 5395 Fax: +1 775 355 0179

www.alsglobal.com/geochemistry

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR **RENO NV 89501** 

Page: 4 - C Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018 Account: RECPER

| (ALS                                                | ,                                 |                                       |                                                |                                      |                                        |                                    |                            |                                 | C                                    | ERTIFIC                                | CATE O                                 | F ANAL                                | YSIS                                       | RE180                                | 26217                             |                              |
|-----------------------------------------------------|-----------------------------------|---------------------------------------|------------------------------------------------|--------------------------------------|----------------------------------------|------------------------------------|----------------------------|---------------------------------|--------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------|--------------------------------------------|--------------------------------------|-----------------------------------|------------------------------|
| Sample Description                                  | Method<br>Analyte<br>Units<br>LOR | ME- MS61<br>Rb<br>ppm<br>0.1          | ME- MS61<br>Re<br>ppm<br>0.002                 | ME- MS61<br>S<br>%<br>0.01           | ME- MS61<br>Sb<br>ppm<br>0.05          | ME- MS61<br>Sc<br>ppm<br>0.1       | ME- MS61<br>Se<br>ppm<br>1 | ME- MS61<br>Sn<br>ppm<br>0.2    | ME- MS61<br>Sr<br>ppm<br>0.2         | ME- MS61<br>Ta<br>ppm<br>0.05          | ME- MS61<br>Te<br>ppm<br>0.05          | ME-MS61<br>Th<br>ppm<br>0.01          | ME- MS61<br>TI<br>%<br>0.005               | ME- MS61<br>TI<br>ppm<br>0.02        | ME- MS61<br>U<br>ppm<br>0.1       | ME- MS6<br>V<br>ppm<br>1     |
| X043231<br>X043232<br>X043233<br>X043234<br>X043235 |                                   | 264<br>236<br>5.4<br>3.9<br>77.2      | 0.003<br><0.002<br><0.002<br><0.002<br><0.002  | 1.40<br>0.07<br>0.32<br>0.11<br>0.01 | 1.15<br>9.04<br>7.27<br>16.25<br>0.32  | 14.7<br>7.0<br>0.4<br>0.8<br>8.3   | 1<br>1<br>1<br>2<br>1      | 3.3<br>4.7<br>0.4<br>0.2<br>1.2 | 119.0<br>810<br>20.9<br>10.8<br>841  | 0.47<br>0.54<br><0.05<br><0.05<br>0.30 | 4.72<br>2.14<br>8.27<br>11.85<br>0.18  | 7.17<br>39.2<br>0.45<br>10.40<br>2.00 | 0.444<br>0.288<br>0.005<br><0.005<br>0.525 | 1.53<br>1.36<br>0.04<br>0.09<br>0.52 | 2.4<br>1.9<br>0.7<br>2.3<br>0.4   | 106<br>53<br>4<br>8<br>120   |
| X043236<br>X043237<br>X043238<br>X043239<br>X043240 |                                   | 295<br>208<br>32.2<br>174.5<br>192.5  | 0.002<br><0.002<br><0.002<br>0.002<br><0.002   | 0.28<br>0.02<br>0.85<br>0.44<br>0.07 | 1.54<br>0.73<br>1.31<br>1.34<br>0.82   | 21.8<br>26.9<br>1.4<br>5.3<br>12,0 | 1 1 1 1                    | 3.0<br>1.9<br>0.5<br>2.8<br>1.8 | 67.2<br>405<br>31.7<br>374<br>128.0  | 0.43<br>0.60<br><0.05<br>0.89<br>0.27  | 2.71<br>0.17<br>2.78<br>2.12<br>1.25   | 1.15<br>2.30<br>0.28<br>12.55<br>9.61 | 0.482<br>0.556<br>0.030<br>0.200<br>0.172  | 1.36<br>1.30<br>0.17<br>0.82<br>1.26 | 2.4<br>2.2<br>1.1<br>0.9<br>1.0   | 143<br>153<br>26<br>40<br>17 |
| X043241<br>X043242<br>X043243<br>X043244<br>X043245 |                                   | 152.5<br>73.7<br>65.8<br>76.7<br>99.8 | <0.002<br>0,002<br><0.002<br><0.002<br><0.002  | 0.01<br>0.30<br>1.03<br>3.59<br>0.64 | 0.43<br>9.57<br>4.03<br>41.5<br>313    | 6.2<br>6.1<br>1.4<br>1.8<br>2.9    | 2<br>1<br>1<br>4<br>2      | 3,8<br>0,8<br>0,4<br>1,2<br>1,6 | 363<br>133.5<br>84.1<br>70.0<br>50.7 | 1.56<br>0.08<br><0.05<br><0.05<br>0.09 | 1.05<br>4.01<br>7.10<br>139.5<br>102.5 | 23.6<br>0.71<br>0.46<br>0.53<br>0.61  | 0.387<br>0.083<br>0.050<br>0.020<br>0.110  | 0.82<br>0.35<br>0.39<br>0.42<br>0.40 | 2.0<br>17.5<br>0.8<br>2.2<br>16.7 | 39<br>60<br>32<br>38<br>52   |
| X043246<br>X043247<br>X043248<br>X043249<br>X043250 |                                   | 179.5<br>310<br>30.1<br>124.0<br>93.1 | <0.002<br><0.002<br><0.002<br><0.002<br><0.002 | 0.42<br>0.95<br>0.36<br>0.70<br>0.13 | 111.5<br>168.0<br>59.5<br>5.36<br>5.21 | 10.2<br>7.5<br>2.0<br>7.3<br>4.4   | 4<br>1<br>2<br>1           | 2.9<br>1.0<br>0.6<br>1.5<br>1.8 | 128.5<br>366<br>34.0<br>43.6<br>13.9 | 0.21<br>0.23<br><0.05<br>0.15<br>0.10  | 24.8<br>2.98<br>23.9<br>32.7<br>3.37   | 2.22<br>2.39<br>0.97<br>0.60<br>0.70  | 0.233<br>0.296<br>0.027<br>0.144<br>0.108  | 0.84<br>1.38<br>0.13<br>0.58<br>0.38 | 9.0<br>5.2<br>4.1<br>0.3<br>0.8   | 91<br>91<br>17<br>52<br>41   |
| X043251<br>X043252<br>X043253<br>X043254<br>X043255 |                                   | 126.0<br>186.0<br>2.9<br>265<br>248   | <0.002<br>0.007<br><0.002<br>0.006<br>0.020    | 0.03<br>0.90<br>3.32<br>0.44<br>1.96 | 1.38<br>1,23<br>199.0<br>3.09<br>1.22  | 7.4<br>8.6<br>0.1<br>6.8<br>6.6    | 1<br>1<br>2<br>1           | 1.3<br>1.3<br>0.3<br>4.7<br>4.3 | 461<br>638<br>47.4<br>1275<br>832    | 0.31<br>0.31<br><0.05<br>2.02<br>1.62  | 0.10<br>0.50<br>5.22<br>0.92<br>11.75  | 1.19<br>1.76<br>0.02<br>28.8<br>22.9  | 0.502<br>0.535<br>0.005<br>0.464<br>0.393  | 0.97<br>1.12<br>0.02<br>1.33<br>1.31 | 0.2<br>1.4<br>0.5<br>6.8<br>1.2   | 116<br>130<br>3<br>48<br>53  |
| X043256                                             |                                   | 7.4                                   | <0.002                                         | 0.88                                 | 90.5                                   | 0.6                                | 2                          | 0.5                             | 13.9                                 | <0.05                                  | 65.2                                   | 0.30                                  | 0.005                                      | 0.06                                 | 0.5                               | 5                            |



4977 Energy Way Reno NV 89502 Phone: +1 775 356 5395 Fax: +1 775 355 0179 www.alsglobal.com/geochemistry

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR **RENO NV 89501** 

Page: 4 - D Total # Pages: 4 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018 Account: RECPER

| CERTIFICATE | OF ANALYSIS  | RE18026217  |
|-------------|--------------|-------------|
| CLIVITIONIL | OI MINTELDID | 11110020211 |

| X043231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| X043235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| XO43237       5.8       21.7       2510       4.0       0.008         XO43238       3.4       0.8       255       2.4       0.194         XO43239       15.2       4.4       200       14.4       0.117         XO43240       34.4       12.2       722       3.2       0.035         XO43241       8.4       29.7       434       7.2       0.029         XO43242       13.1       3.7       4290       2.7       0.094         XO43243       5.3       0.7       325       5.4       0.125         XO43244       2.2       0.5       336       2.3       357       4.21       2.40         XO43245       14.5       3.6       429       7.8       189       1.930       3.02         XO43245       14.5       3.6       429       7.8       189       1.930       3.02         XO43246       19.2       4.9       667       2.7       0.071         XO43247       33.0       3.2       208       6.8       0.186         XO43249       11.4       1.6       45       2.5       0.062         XO43250       9.7       0.7       142 <td< td=""></td<> |
| X043241       8.4       29.7       434       7.2       0.029         X043242       13.1       3.7       4290       2.7       0.094         X043243       5.3       0.7       325       5.4       0.125         X043244       2.2       0.5       336       2.3       357       4.21       2.40         X043245       14.5       3.6       429       7.8       189       1.930       3.02         X043246       19.2       4.9       667       2.7       0.071         X043247       33.0       3.2       208       6.8       0.186         X043248       2.5       1.5       368       0.7       0.556         X043249       11.4       1.6       45       2.5       0.062         X043250       9.7       0.7       142       3.0       0.063         X043251       15.3       6.6       147       6.1       0.016         X043252       9.8       10.5       2310       7.3       0.012         X043253       0.2       0.7       >10000       <0.5                                                                                                  |
| X043246       19.2       4.9       667       2.7       0.071         X043247       33.0       3.2       208       6.8       0.186         X043248       2.5       1.5       368       0.7       0.556         X043249       11.4       1.6       45       2.5       0.062         X043250       9.7       0.7       142       3.0       0.063         X043251       15.3       6.6       147       6.1       0.016         X043252       9.8       10.5       2310       7.3       0.012         X043253       0.2       0.7       >10000       <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| X043251     15.3     6.6     147     6.1     0.016       X043252     9.8     10.5     2310     7.3     0.012       X043253     0.2     0.7     >10000     <0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |



ALS USA Inc.

4977 Energy Way
Reno NV 89502
Phone: +1 775 356 5395 Fax: +1 775 355 0179
www.alsglobal.com/geochemistry

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR RENO NV 89501 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 17- FEB- 2018 Account: RECPER

Project: NEW ENTERPRISE

CERTIFICATE OF ANALYSIS RE18026217

|                    |                                        | CERTIFICATE COM                       | MENTS                         |                                |
|--------------------|----------------------------------------|---------------------------------------|-------------------------------|--------------------------------|
|                    |                                        | ANALY                                 | TICAL COMMENTS                |                                |
| Applies to Method: | REE's may not be totally s<br>ME- MS61 | soluble in this method.               |                               |                                |
|                    |                                        | LABOR                                 | ATORY ADDRESSES               |                                |
|                    |                                        | cated at 4977 Energy Way, Reno, NV,   |                               |                                |
| Applies to Method: | Au- GRA21<br>CRU- 31<br>PUL- QC        | Au- ICP2 1<br>CRU- QC<br>SND- ALS     | BAG- 01<br>LOG- 22<br>SPL- 21 | CRU- 22c<br>PUL- 32<br>WEI- 21 |
|                    | Processed at ALS Vancou                | ver located at 2103 Dollarton Hwy, No | rth Vancouver, BC, Canada.    |                                |
| Applies to Method: | Ag- OG62<br>Pb- OG62                   | Cu- OG62<br>Zn- OG62                  | ME- MS61                      | ME- OG62                       |
|                    |                                        |                                       |                               |                                |
|                    |                                        |                                       |                               |                                |
|                    |                                        |                                       |                               |                                |
|                    |                                        |                                       |                               |                                |



4977 Energy Way Reno NV 89502 Phone: +1 775 356 5395 Fax: +1 775 355 0179 www.alsglobal.com/geochemistry To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR RENO NV 89501 Page: 1 Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018 This copy reports on

19- FEB- 2018 Account: RECPER

### QC CERTIFICATE RE18026217

Project: NEW ENTERPRISE

This report is for 106 Rock samples submitted to our lab in Reno, NV, USA on 5-FEB-2018.

The following have access to data associated with this certificate:

JAY ADAMS

JIM RENARD

ED WALKER

|          | SAMPLE PREPARATION                  |  |
|----------|-------------------------------------|--|
| ALS CODE | DESCRIPTION                         |  |
| WEI- 21  | Received Sample Weight              |  |
| LOG-22   | Sample login - Rcd w/o BarCode      |  |
| SND- ALS | Send samples to internal laboratory |  |
| CRU-22c  | Crush entire sample > 70% - 19 mm   |  |
| BAG- 01  | Bulk Master for Storage             |  |
| CRU- QC  | Crushing QC Test                    |  |
| PUL- QC  | Pulverizing QC Test                 |  |
| CRU-31   | Fine crushing - 70% < 2mm           |  |
| SPL- 21  | Split sample - riffle splitter      |  |
| PUL- 32  | Pulverize 1000g to 85% < 75 um      |  |

|           | ANALYTICAL PROCEDUR            | ES         |
|-----------|--------------------------------|------------|
| ALS CODE  | DESCRIPTION                    | INSTRUMENT |
| Ag- OG62  | Ore Grade Ag - Four Acid       | ICP- AES   |
| ME- OG62  | Ore Grade Elements - Four Acid | ICP- AES   |
| Cu- OG62  | Ore Grade Cu - Four Acid       | ICP- AES   |
| Pb- OG62  | Ore Grade Pb - Four Acid       | ICP- AES   |
| Zn- OG62  | Ore Grade Zn - Four Acid       | ICP- AES   |
| Au-ICP21  | Au 30g FA ICP- AES Finish      | ICP- AES   |
| Au- GRA21 | Au 30g FA- GRAV finish         | WST-SIM    |
| ME-MS61   | 48 element four acid ICP- MS   |            |

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim 'or deposit has been determined based on the results of assays of multiple samples of geological materials collected by the prospective investor or by a qualified person selected by him/her and based on an evaluation of all engineering data which is available concerning any proposed project. Statement required by Nevada State Law NRS 519

To: PERSHING RECOURCES ATTN: JAY ADAMS 200 SOUTH VIRGINIA ST 8TH FLOOR RENO NV 89501

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

\*\*\*\*\* See Appendix Page for comments regarding this certificate \*\*\*\*\*

Signature:

Hanachi Bouhenchir, Lab Manager



4977 Energy Way Reno NV 89502 Phone: +1 775 356 5395 Fax: +1 775 355 0179 www.alsglobal.com/geochemistry To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR RENO NV 89501 Page: 2 - A Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 17-FEB- 2018 Account: RECPER

|                                                                                                                                                                                                                                                                                                                             |                                                                                                       |                                      |                                      |                                      |                                     |                                      |                                      |                                      | QC                                   | CERTIF                               | FICATE                               | OF AN                       | ALYSIS                                    | RE18                            | 302621                               | /                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------|-------------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|
| Sample Description                                                                                                                                                                                                                                                                                                          | Method<br>Analyte<br>Units<br>LOR                                                                     | ME- MS61<br>Ag<br>ppm<br>0.01        | ME- MS61<br>Al<br>%<br>0.01          | ME- MS61<br>As<br>ppm<br>0.2         | ME- MS61<br>Ba<br>ppm<br>10         | ME- MS61<br>Be<br>ppm<br>0.05        | ME- MS61<br>Bi<br>ppm<br>0.01        | ME- MS61<br>Ca<br>%<br>0.01          | ME- MS61<br>Cd<br>ppm<br>0.02        | ME- MS61<br>Ce<br>ppm<br>0.01        | ME- MS61<br>Co<br>ppm<br>0.1         | ME- MS61<br>Cr<br>ppm<br>1  | ME- MS61<br>Cs<br>ppm<br>0.05             | ME- MS61<br>Cu<br>ppm<br>0.2    | ME- MS61<br>Fe<br>%<br>0.01          | ME- MS6<br>Ga<br>ppm<br>0.05         |
|                                                                                                                                                                                                                                                                                                                             |                                                                                                       |                                      |                                      |                                      |                                     |                                      | STAN                                 | IDARDS                               |                                      |                                      |                                      |                             |                                           |                                 |                                      |                                      |
| CDN- GS- 2Q Target Range - Lower Upper G913- 10 Target Range - Lower Upper G913- 10 Target Range - Lower Upper GBM903- 13 Target Range - Lower Upper JK- 17 JK- 17 Target Range - Lower Upper MP- 16 Target Range - Lower Upper MP- 1b MP- 1b Target Range - Lower Upper MRGe008 MRGe008 MRGe008 Target Range - Lower Upper | Bound | 4,53<br>4,34<br>4,23<br>4,00<br>4,92 | 7.11<br>7.16<br>7.45<br>6.64<br>8.14 | 32.5<br>35.0<br>34.0<br>29.5<br>36.5 | 1150<br>1110<br>1130<br>920<br>1270 | 3.61<br>3.43<br>3.10<br>2.98<br>3.76 | 0.67<br>0.73<br>0.68<br>0.60<br>0.76 | 2.77<br>2.67<br>2.61<br>2.35<br>2.90 | 2.26<br>2.07<br>2.30<br>2.00<br>2.48 | 58.2<br>61.6<br>68.0<br>66.2<br>81.0 | 20.4<br>21.1<br>19.3<br>17.7<br>21.9 | 94<br>91<br>95<br>81<br>102 | 12.45<br>11.85<br>12.20<br>11.20<br>13.80 | 663<br>643<br>626<br>587<br>675 | 4.08<br>3,91<br>3.97<br>3.55<br>4.37 | 20.1<br>19.9<br>18.4<br>17.5<br>21.5 |
| OGGeo08<br>Target Range - Lower<br>Upper                                                                                                                                                                                                                                                                                    | Bound<br>Bound                                                                                        |                                      |                                      |                                      |                                     |                                      |                                      |                                      |                                      |                                      |                                      |                             |                                           |                                 |                                      |                                      |



4977 Energy Way Reno NV 89502 Phone: +1 775 356 5395 Fax: +1 775 355 0179 www.alsglobal.com/geochemistry

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR **RENO NV 89501** 

Page: 2 - B Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018 Account: RECPER

OC CERTIFICATE OF ANALYSIS RE18026217

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |          |          |          |          |          |          | QC       | CENTII   | ICATE    | OI AIN   | AL I JIJ | KEI      | 002021   | *         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|
| Analyte Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - MS61 | ME- MS61 | ME-M\$61 | ME: MS61 | ME- MS6.1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ge     | Hf       | In       | K        | La       | Li       | Mg       | Mn       | Mo       | Na       | Nb       | Ni       | P        | Pb       | Rb        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ppm    | ppm      | ppm      | %        | ppm      | ppm      | %        | ppm      | ppm      | %        | ppm      | ppm      | ppm      | ppm      | ppm       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.05   | 0.1      | 0.005    | 0.01     | 0.5      | 0.2      | 0.01     | 5        | 0.05     | 0.01     | 0.1      | 0.2      | 10       | 0.5      | 0.1       |
| CCU-1e Target Range - Lower Bound Upper Bound CDN- GS- 2Q Target Range - Lower Bound Upper Bound G913- 10 Target Range - Lower Bound Upper Bound G913- 10 Target Range - Lower Bound Upper Bound GBM903- 13 Target Range - Lower Bound Upper Bound JK- 17 JK- 17 Target Range - Lower Bound Upper Bound LEA- 16 Target Range - Lower Bound Upper Bound MP- 1b MP- 1b Target Range - Lower Bound Upper Bound MR- 1b MR- 1b Target Range - Lower Bound Upper Bound MR- 1b MR- 1b Target Range - Lower Bound Upper Bound MR- 1b Target Range - Lower Bound Upper Bound MR- 1b Target Range - Lower Bound Upper Bound | 0.14   | 3.4      | 0.178    | 3.27     | 26.7     | 35.1     | 1.34     | 601      | 16.65    | 2.07     | 22.1     | 753      | 1100     | 1170     | 167.0     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.14   | 3.4      | 0.179    | 3.12     | 30.8     | 34.5     | 1.31     | 575      | 15.55    | 1.99     | 20.5     | 719      | 1060     | 1180     | 173.0     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.13   | 3.1      | 0.168    | 3.10     | 31.9     | 31.0     | 1.30     | 567      | 15.20    | 2.00     | 21.1     | 708      | 1070     | 1090     | 180.5     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <0.05  | 2.8      | 0.155    | 2.79     | 31.1     | 29.5     | 1.17     | 497      | 13.65    | 1.76     | 19.0     | 622      | 930      | 971      | 173.5     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.27   | 3.6      | 0.201    | 3.43     | 39.1     | 36.5     | 1.45     | 619      | 16.75    | 2.18     | 23.4     | 760      | 1160     | 1185     | 212       |



4977 Energy Way Reno NV 89502 Phone: +1 775 356 5395 Fax: +1 775 355 0179 www.alsglobal.com/geochemistry To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR RENO NV 89501 Page: 2 - C Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018 Account: RECPER

|                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                         |                                           |                                      |                                      |                                      |                            |                                 |                                 | QC                                   | CERTIF                                            | ICATE                                    | OF AN                                     | ALYSIS                               | KEIC                            | 302621                         | 1                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------|---------------------------------|---------------------------------|--------------------------------------|---------------------------------------------------|------------------------------------------|-------------------------------------------|--------------------------------------|---------------------------------|--------------------------------|---------------------------------|
| Sample Description                                                                                                                                                                                                                                                                                                                                      | Method<br>Analyte<br>Units<br>LOR                                                                                                                                                                                       | ME- MS61<br>Re<br>ppm<br>0.002            | ME- MS61<br>5<br>%<br>0.01           | ME- MS61<br>Sb<br>ppm<br>0.05        | ME- MS61<br>Sc<br>ppm<br>0.1         | ME- MS61<br>Se<br>ppm<br>1 | ME- MS61<br>Sn<br>ppm<br>0.2    | ME- MS61<br>Sr<br>ppm<br>0.2    | ME- MS61<br>Ta<br>ppm<br>0.05        | ME- MS61<br>Te<br>ppm<br>0.05                     | ME- MS61<br>Th<br>ppm<br>0.01            | ME- MS61<br>Ti<br>%<br>0.005              | ME- MS61<br>TI<br>ppm<br>0.02        | ME- MS61<br>U<br>ppm<br>0.1     | ME- MS61<br>V<br>ppm<br>1      | ME- MS6<br>W<br>ppm<br>0.1      |
|                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                         |                                           |                                      |                                      |                                      |                            | STAN                            | DARDS                           |                                      |                                                   |                                          |                                           |                                      |                                 |                                |                                 |
| CDN- GS- 2Q Target Range - Lower Upper G913- 10 Target Range - Lower Upper G913- 10 Target Range - Lower Upper GBM903- 13 Target Range - Lower Upper JK- 17 JK- 17 Target Range - Lower Upper LEA- 16 Target Range - Lower Upper MP- 1b MP- 1b Target Range - Lower Upper MRGe008 MRGe008 Target Range - Lower Upper OGGe008 Target Range - Lower Upper | Bound | 0,009<br>0.008<br>0.013<br>0.005<br>0.013 | 0.32<br>0.31<br>0.31<br>0.27<br>0.35 | 4.87<br>4.66<br>4.59<br>3.89<br>5.39 | 11.0<br>11.3<br>11.3<br>11.1<br>13.7 | 1 2 1 <1 4                 | 4.3<br>4.0<br>4.1<br>3.5<br>4.7 | 322<br>306<br>318<br>277<br>339 | 1.61<br>1.46<br>1.53<br>1.39<br>1.81 | <0.05<br><0.05<br><0.05<br><0.05<br><0.05<br>0.14 | 14.25<br>15.90<br>17.50<br>17.90<br>21.9 | 0.523<br>0.503<br>0.510<br>0.443<br>0.553 | 1.14<br>1.14<br>1.07<br>0.89<br>1.25 | 4.9<br>5.0<br>5.3<br>4.9<br>6.2 | 116<br>112<br>113<br>97<br>121 | 5.2<br>4.8<br>4.8<br>4.1<br>5.8 |



4977 Energy Way Reno NV 89502 Phone: +1 775 356 5395 Fax: +1 775 355 0179 www.alsglobal.com/geochemistry

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR **RENO NV 89501** 

Page: 2 - D Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018 Account: RECPER

| QC | CERTIFICATE | OF | ANALYSIS | RE18026217 |
|----|-------------|----|----------|------------|
|    |             |    |          |            |

| A                                    | nalyte | E- MS61<br>Y<br>ppm<br>0.1 | ME- MS61<br>Zn<br>ppm<br>2 | ME- MS61<br>Zr<br>ppm<br>0.5 | Ag- OG62<br>Ag<br>ppm<br>1 | Cu- OG62<br>Cu<br>%<br>0.001 | Pb- OG62<br>Pb<br>%<br>0.001 | Zn- OG62<br>Zn<br>%<br>0.001 | Au- ICP21<br>Au<br>ppm<br>0.001 | Au- GRA21<br>Au<br>ppm<br>0.05 |  |
|--------------------------------------|--------|----------------------------|----------------------------|------------------------------|----------------------------|------------------------------|------------------------------|------------------------------|---------------------------------|--------------------------------|--|
|                                      |        |                            |                            |                              |                            |                              | STAN                         | DARDS                        |                                 |                                |  |
| CCU- 1e                              |        |                            |                            |                              | 210                        | 23.1                         | 0.706                        |                              |                                 |                                |  |
| arget Range - Lower Bot<br>Upper Bot | und    |                            |                            |                              |                            | 22.1<br>23.7                 |                              |                              |                                 |                                |  |
| CDN- GS- 2Q                          |        |                            |                            |                              |                            |                              |                              |                              |                                 | 2.45                           |  |
| arget Range - Lower Box              | und    |                            |                            |                              |                            |                              |                              |                              |                                 | 2.18<br>2.56                   |  |
| Upper Box<br>3913- 10                | und    |                            |                            |                              |                            |                              |                              |                              |                                 | 7.14                           |  |
| Target Range - Lower Box             | und    |                            |                            |                              |                            |                              |                              |                              |                                 | 6.61                           |  |
| Upper Box                            | und    |                            |                            |                              |                            |                              |                              |                              | 7.24                            | 7.57                           |  |
| 0913-10<br>Farget Range - Lower Bor  | und    |                            |                            |                              |                            |                              |                              |                              | 6.66                            |                                |  |
| Upper Boi                            | und    |                            |                            |                              |                            |                              |                              |                              | 7.52                            |                                |  |
| GBM903-13                            |        |                            |                            |                              | 25                         | 2.92                         | 2.14                         |                              |                                 |                                |  |
| Farget Range - Lower Bo<br>Upper Bo  | und    |                            |                            |                              | 22<br>26                   | 2.79<br>3.00                 | 2.07                         |                              |                                 |                                |  |
| К- 17                                | una    |                            |                            |                              |                            |                              | 222                          |                              | 1.915                           |                                |  |
| K- 17                                |        |                            |                            |                              |                            |                              |                              |                              | 1,980<br>1.875                  |                                |  |
| Farget Range - Lower Bo<br>Upper Bo  | und    |                            |                            |                              |                            |                              |                              |                              | 2.12                            |                                |  |
| LEA- 16                              | und    |                            |                            |                              |                            |                              |                              |                              | 0,504                           |                                |  |
| Target Range - Lower Bo              | und    |                            |                            |                              |                            |                              |                              |                              | 0.470<br>0.532                  |                                |  |
| Upper Bo                             | und    |                            |                            |                              | 49                         |                              | 2.08                         | 17.20                        | 0,532                           |                                |  |
| MP-1b                                |        |                            |                            |                              | 48                         | 3.05                         | 2.04                         | 16.75                        |                                 |                                |  |
| Target Range - Lower Bo              | und    |                            |                            |                              | 44                         | 2.96                         | 2.02                         | 16.10<br>17.25               |                                 |                                |  |
| Upper Bo<br>MRGeo08                  | und    | 24.2                       | 876                        | 119.5                        | 50                         | 3,18                         | 2,17                         | 17.23                        |                                 |                                |  |
| MRGeo08                              |        | 24.3                       | 841                        | 113.0                        |                            |                              |                              |                              |                                 |                                |  |
| MRGeo08                              |        | 25.0                       | 813                        | 103.0                        |                            |                              |                              |                              |                                 |                                |  |
| Target Range - Lower Bo<br>Upper Bo  | ound   | 23,8<br>29.3               | 722<br>886                 | 92.2<br>126.0                |                            |                              |                              |                              |                                 |                                |  |
| OGGeo08                              | MIN.   | _0.0                       |                            | , ==, =                      | 20                         |                              |                              |                              |                                 |                                |  |
| Target Range - Lower Bo              |        |                            |                            |                              | 18                         |                              |                              |                              |                                 |                                |  |
|                                      | und    |                            |                            |                              | 22                         |                              |                              |                              |                                 |                                |  |



4977 Energy Way Reno NV 89502

Phone: +1 775 356 5395 Fax: +1 775 355 0179 www.alsglobal.com/geochemistry

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR **RENO NV 89501** 

Page: 3 - A Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018

Account: RECPER

| (ALS,                |                                   |                               |                             |                              |                             |                               |                               |                             | QC                            | CERTIF                       | ICATE                        | OF AN                      | ALYSIS                        | RE18                         | 302621                      | /                            |
|----------------------|-----------------------------------|-------------------------------|-----------------------------|------------------------------|-----------------------------|-------------------------------|-------------------------------|-----------------------------|-------------------------------|------------------------------|------------------------------|----------------------------|-------------------------------|------------------------------|-----------------------------|------------------------------|
| Sample Description   | Method<br>Analyte<br>Units<br>LOR | ME- MS61<br>Ag<br>ppm<br>0.01 | ME- MS61<br>Al<br>%<br>0.01 | ME- MS61<br>As<br>ppm<br>0.2 | ME- MS61<br>Ba<br>ppm<br>10 | ME- MS61<br>Be<br>ppm<br>0.05 | ME- MS61<br>Bi<br>ppm<br>0.01 | ME- MS61<br>Ca<br>%<br>0.01 | ME- MS61<br>Cd<br>ppm<br>0.02 | ME-MS61<br>Ce<br>ppm<br>0.01 | ME- MS61<br>Co<br>ppm<br>0.1 | ME- MS61<br>Cr<br>ppm<br>1 | ME- MS61<br>Cs<br>ppm<br>0.05 | ME- MS61<br>Cu<br>ppm<br>0.2 | ME- MS61<br>Fe<br>%<br>0.01 | ME- MS6<br>Ga<br>ppm<br>0.05 |
|                      |                                   |                               |                             |                              |                             |                               | STAN                          | IDARDS                      |                               |                              |                              |                            |                               |                              |                             |                              |
| OGGeo08              |                                   | 19.25                         | 6.86                        | 122.0                        | 700                         | 3.26                          | 10.00                         | 2.16                        | 19.30                         | 68.3                         | 96.0                         | 83                         | 10.30                         | 8250                         | 5.29                        | 17.55                        |
| OGGeo08              |                                   | 21.1                          | 6.79                        | 134.0                        | 930                         | 3.16                          | 10.20                         | 2.25                        | 19.90                         | 64.7                         | 100.5                        | 86                         | 10.85                         | 8760                         | 5.63                        | 18.05                        |
| Target Range - Lower | Bound                             | 18.15                         | 6.07                        | 106.0                        | 700                         | 2.59                          | 9.44                          | 1.98                        | 16.70                         | 64.8                         | 87.2                         | 78                         | 9.85                          | 7800                         | 4.81                        | 16.05                        |
|                      | Bound                             | 22.2                          | 7.44                        | 130.0                        | 980                         | 3.27                          | 11.55                         | 2.44                        | 20.5                          | 79.2                         | 107.0                        | 98                         | 12.15                         | 8980                         | 5.91                        | 19.75                        |
| OGGeo08              |                                   | 10000                         |                             |                              |                             |                               |                               |                             |                               |                              |                              |                            |                               |                              |                             |                              |
| OGGeo08              |                                   |                               |                             |                              |                             |                               |                               |                             |                               |                              |                              |                            |                               |                              |                             |                              |
| Target Range - Lower |                                   |                               |                             |                              |                             |                               |                               |                             |                               |                              |                              |                            |                               |                              |                             |                              |
|                      | Bound                             |                               |                             |                              |                             |                               |                               |                             |                               |                              |                              |                            |                               |                              |                             |                              |
| OREAS 503c           |                                   |                               |                             |                              |                             |                               |                               |                             |                               |                              |                              |                            |                               |                              |                             |                              |
| OREAS 503c           | Daniel                            |                               |                             |                              |                             |                               |                               |                             |                               |                              |                              |                            |                               |                              |                             |                              |
| Target Range - Lower | Bound                             |                               |                             |                              |                             |                               |                               |                             |                               |                              |                              |                            |                               |                              |                             |                              |
| OREAS 604            | bound                             |                               |                             |                              |                             |                               |                               |                             |                               |                              |                              |                            |                               |                              |                             |                              |
| Target Range - Lower | Bound<br>Bound                    |                               |                             |                              |                             |                               |                               |                             |                               |                              |                              |                            |                               |                              |                             |                              |
| OREAS 621            |                                   |                               |                             |                              |                             |                               |                               |                             |                               |                              |                              |                            |                               |                              |                             |                              |
| Target Range - Lower | Bound                             |                               |                             |                              |                             |                               |                               |                             |                               |                              |                              |                            |                               |                              |                             |                              |
| OREAS 905            |                                   | 0.56                          | 7.80                        | 36.4                         | 2940                        | 3.37                          | 5.83                          | 0.64                        | 0.39                          | 98.2                         | 15.3                         | 19                         | 7.38                          | 1610                         | 4.23                        | 26.8                         |
| OREAS 905            |                                   | 0.53                          | 7,35                        | 34.3                         | 2760                        | 3.08                          | 5.70                          | 0.60                        | 0.28                          | 94.3                         | 15.7                         | 18                         | 6.79                          | 1500                         | 3.99                        | 26.1                         |
| OREAS 905            |                                   | 0.52                          | 7.60                        | 34.9                         | 2850                        | 2.91                          | 5.61                          | 0.59                        | 0.36                          | 100.0                        | 14.5                         | 19                         | 6.98                          | 1515                         | 4.07                        | 24.5                         |
| Target Range - Lower |                                   | 0.46                          | 6.67                        | 31.0                         | 2280                        | 2.69                          | 5.14                          | 0.52                        | 0.30                          | 82.8                         | 13.2                         | 16                         | 6.05                          | 1425                         | 3.66                        | 22.5                         |
|                      | Bound                             | 0.58                          | 8.17                        | 38.4                         | 3110                        | 3.39                          | 6.30                          | 0.66                        | 0.42                          | 101.0                        | 16.4                         | 22<br>84                   | 7.51                          | 1640                         | 4.50                        | 27.7                         |
| OREAS 920            |                                   | 0.15                          | 7.84                        | 4.9                          | 550                         | 2.76                          | 0.86                          | 0.49                        | 0.07                          | 89.0<br>107.5                | 15.3<br>15.5                 | 86                         | 7.95<br>9.42                  | 120.0<br>118.5               | 4.03                        | 21.9                         |
| OREAS 920            | Paund                             | 0.27                          | 8.31<br>6.91                | 7.1                          | 610<br>450                  | 2.84                          | 0.84                          | 0.51                        | 0.07                          | 84.6                         | 13.9                         | 70                         | 7.72                          | 104.0                        | 3.72                        | 18.65                        |
| Target Range - Lower | Bound                             | 0.08                          | 8.47                        | 5.8                          | 640                         | 3.22                          | 0.77                          | 0.56                        | 0.12                          | 103.5                        | 17.3                         | 88                         | 9.54                          | 120.0                        | 4.56                        | 22.9                         |
| OREAS 932            | bound                             | 0.10                          | 0.47                        | 0.0                          | 0.10                        | 0.22                          |                               | 0.00                        | 0.14                          | 100.0                        | 11.0                         |                            | 0.07                          | 186.6                        | 116-5                       | 19900                        |
| OREAS 932            |                                   |                               |                             |                              |                             |                               |                               |                             |                               |                              |                              |                            |                               |                              |                             |                              |
| Target Range - Lower | Bound                             |                               |                             |                              |                             |                               |                               |                             |                               |                              |                              |                            |                               |                              |                             |                              |
| OREAS- 133b          | - 2                               |                               |                             |                              |                             |                               |                               |                             |                               |                              |                              |                            |                               |                              |                             |                              |
| Target Range - Lower | Bound<br>Bound                    |                               |                             |                              |                             |                               |                               |                             |                               |                              |                              |                            |                               |                              |                             |                              |
| OREAS- 133b          |                                   |                               |                             |                              |                             |                               |                               |                             |                               |                              |                              |                            |                               |                              |                             |                              |
| OREAS-133b           |                                   |                               |                             |                              |                             |                               |                               |                             |                               |                              |                              |                            |                               |                              |                             |                              |
| Target Range - Lower | Bound Bound                       |                               |                             |                              |                             |                               |                               |                             |                               |                              |                              |                            |                               |                              |                             |                              |
| OREAS- 134b          | 7000                              |                               |                             |                              |                             |                               |                               |                             |                               |                              |                              |                            |                               |                              |                             |                              |



ALS USA Inc. 4977 Energy Way Reno NV 89502

Phone: +1 775 356 5395 Fax: +1 775 355 0179

www.alsglobal.com/geochemistry

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR RENO NV 89501

Page: 3 - B Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018 Account: RECPER

| (ALS)                             |                                         |                               |                              |                                |                            |                              |                              |                             | QC                         | CERTIF                        | FICATE                      | OF AN                        | ALYSIS                       | RE18                       | 302621                       | 7                           |
|-----------------------------------|-----------------------------------------|-------------------------------|------------------------------|--------------------------------|----------------------------|------------------------------|------------------------------|-----------------------------|----------------------------|-------------------------------|-----------------------------|------------------------------|------------------------------|----------------------------|------------------------------|-----------------------------|
| Sample Description                | Method<br>Analyte<br>Units<br>LOR       | ME- MS61<br>Ge<br>ppm<br>0.05 | ME- MS61<br>Hf<br>ppm<br>0.1 | ME- MS61<br>In<br>ppm<br>0.005 | ME- MS61<br>K<br>%<br>0.01 | ME- MS61<br>La<br>ppm<br>0.5 | ME- MS61<br>Li<br>ppm<br>0,2 | ME- MS61<br>Mg<br>%<br>0.01 | ME- MS61<br>Mn<br>ppm<br>5 | ME- MS61<br>Mo<br>ppm<br>0.05 | ME- MS61<br>Na<br>%<br>0.01 | ME- MS61<br>Nb<br>ppm<br>0.1 | ME- MS61<br>Ni<br>ppm<br>0.2 | ME- MSG1<br>P<br>ppm<br>10 | ME- MS61<br>Pb<br>ppm<br>0.5 | ME- MS6<br>Rb<br>ppm<br>0.1 |
|                                   |                                         |                               |                              |                                |                            |                              | STAN                         | DARDS                       |                            |                               |                             |                              |                              |                            |                              |                             |
| OGGeo08                           |                                         | 0.17                          | 2,9                          | 1.430                          | 2.92                       | 34.0                         | 33.4                         | 1,25                        | 509                        | 892                           | 1.82                        | 16.9                         | 8660                         | 830                        | 7100                         | 196.5                       |
| OGGeo08                           |                                         | 0.30                          | 3.5                          | 1.545                          | 3.11                       | 31.8                         | 32.9                         | 1.25                        | 540                        | 968                           | 1.93                        | 18.3                         | 9580                         | 920                        | 7960                         | 166.5                       |
| Target Range - Lower B            | lound                                   | 0.25                          | 2.5                          | 1.320                          | 2.59                       | 31.0                         | 29.7                         | 1.11                        | 447                        | 841                           | 1.62                        | 15.4                         | 8000                         | 760                        | 6520                         | 164.5                       |
| Upper B                           |                                         | 0.49                          | 3.3                          | 1.620                          | 3.19                       | 39.0                         | 36.7                         | 1.38                        | 557                        | 1030                          | 2.00                        | 19.0                         | 9770                         | 950                        | 7970                         | 201                         |
| OGGeo08                           |                                         |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                            |                              |                             |
| OGGeo08                           |                                         |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                            |                              |                             |
| Target Range - Lower B            | lound                                   |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                            |                              |                             |
| Upper B                           | ound                                    |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                            |                              |                             |
| OREAS 503c                        |                                         |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                            |                              |                             |
| OREAS 503c                        | and a                                   |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                            |                              |                             |
| Target Range - Lower B            |                                         |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                            |                              |                             |
| Upper B                           | ound                                    |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                            |                              |                             |
| OREAS 604                         | Company.                                |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                            |                              |                             |
| Target Range - Lower B<br>Upper B |                                         |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                            |                              |                             |
| OREAS 621                         | odila                                   |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                            |                              |                             |
| Target Range - Lower B            | lound                                   |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                            |                              |                             |
| Upper B                           | 111111111111111111111111111111111111111 |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                            |                              |                             |
| OREAS 905                         | 27,000                                  | 0.18                          | 7.5                          | 0.692                          | 3.09                       | 50.1                         | 21.3                         | 0.28                        | 408                        | 3.45                          | 2.51                        | 19.2                         | 9.6                          | 290                        | 32.3                         | 151.5                       |
| OREAS 905                         |                                         | 0.20                          | 7.1                          | 0.637                          | 2.92                       | 51.0                         | 20,7                         | 0.26                        | 378                        | 3.36                          | 2.36                        | 17.6                         | 9.5                          | 280                        | 32.2                         | 150.0                       |
| OREAS 905                         |                                         | 0.16                          | 6.6                          | 0.644                          | 2,91                       | 48.6                         | 20.6                         | 0.27                        | 377                        | 3.23                          | 2.41                        | 18.1                         | 9.0                          | 280                        | 29.2                         | 141.0                       |
| Target Range - Lower B            | lound                                   | < 0.05                        | 6.1                          | 0.571                          | 2.58                       | 40.9                         | 17.8                         | 0.24                        | 333                        | 2.89                          | 2.15                        | 16.2                         | 8.4                          |                            | 26.9                         | 124.0                       |
| Upper B                           | lound                                   | 0.27                          | 7.6                          | 0.709                          | 3.18                       | 51.1                         | 22.2                         | 0.31                        | 418                        | 3.65                          | 2.65                        | 20.0                         | 10.7                         |                            | 33.9                         | 152.0                       |
| OREAS 920                         |                                         | 0.16                          | 4.2                          | 0.085                          | 2.90                       | 45.0                         | 30.5                         | 1,33                        | 599                        | 0.47                          | 0.64                        | 16.5                         | 41.2                         | 730                        | 25.8                         | 181.5                       |
| OREAS 920                         |                                         | 0.32                          | 5.1                          | 0.100                          | 3.16                       | 53.5                         | 31.5                         | 1.42                        | 653                        | 0.45                          | 0.69                        | 19.0                         | 42.3                         | 840                        | 32.4                         | 188.0                       |
| Target Range - Lower B            |                                         | 0.06                          | 4.0                          | 0.070                          | 2.59                       | 41.0                         | 26.0                         | 1.23                        | 535                        | 0.34                          | 0.56                        | 15.6                         | 37.4                         |                            | 20.7                         | 158.5                       |
| Upper B<br>OREAS 932              | ound                                    | 0.28                          | 5.2                          | 0.098                          | 3.19                       | 51.2                         | 32,2                         | 1.53                        | 665                        | 0.58                          | 0.71                        | 19.2                         | 46.2                         |                            | 26.4                         | 193.5                       |
| OREAS 932                         |                                         |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                            |                              |                             |
| Target Range - Lower E            | hound                                   |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                            |                              |                             |
| Upper B                           |                                         |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                            |                              |                             |
| OREAS-133b                        | -,411,04                                |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                            |                              |                             |
| Farget Range - Lower B            | Bound                                   |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                            |                              |                             |
| Upper B                           |                                         |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                            |                              |                             |
| OREAS-133b                        |                                         |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                            |                              |                             |
| OREAS- 133b                       | Mary III                                |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                            |                              |                             |
| Target Range - Lower E            |                                         |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                            |                              |                             |
| Upper B                           | lound                                   |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                            |                              |                             |
| OREAS- 134b                       |                                         |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                            |                              |                             |



4977 Energy Way Reno NV 89502

Phone: +1 775 356 5395 Fax: +1 775 355 0179

www.alsglobal.com/geochemistry

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR RENO NV 89501 Page: 3 - C Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018 Account: RECPER

| (ALS)                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                            |                               |                              |                            |                              | QC CERTIFICATE OF ANALYSIS RE18026217 |                               |                               |                              |                              |                               |                             |                           |                             |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------|-------------------------------|------------------------------|----------------------------|------------------------------|---------------------------------------|-------------------------------|-------------------------------|------------------------------|------------------------------|-------------------------------|-----------------------------|---------------------------|-----------------------------|
|                                   | Method<br>Analyte<br>Units<br>LOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ME- MS61<br>Re<br>ppm<br>0,002 | ME- MS61<br>S<br>%<br>0.01 | ME- MS61<br>Sb<br>ppm<br>0.05 | ME- MS61<br>Sc<br>ppm<br>0.1 | ME- MS61<br>Se<br>ppm<br>1 | ME- MS61<br>Sn<br>ppm<br>0.2 | ME- MS61<br>Sr<br>ppm<br>0.2          | ME- MS61<br>Ta<br>ppm<br>0.05 | ME- MS61<br>Te<br>ppm<br>0.05 | ME-MS61<br>Th<br>ppm<br>0.01 | ME- MS61<br>Ti<br>%<br>0.005 | ME- MS61<br>TI<br>ppm<br>0.02 | ME- MS61<br>U<br>ppm<br>0.1 | ME- MS61<br>V<br>ppm<br>1 | ME- MS61<br>W<br>ppm<br>0.1 |
|                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                            |                               |                              |                            | STAN                         | DARDS                                 |                               |                               |                              |                              |                               |                             |                           |                             |
| OGGeo08                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,430                          | 2.76                       | 25.3                          | 11.0                         | 11                         | 13.3                         | 253                                   | 1.25                          | 0.16                          | 17.30                        | 0.396                        | 1.81                          | 4.9                         | 87                        | 4.6                         |
| OGGeo08                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.410                          | 3.00                       | 26.7                          | 10.2                         | 13                         | 15.1                         | 266                                   | 1.36                          | 0.16                          | 15.35                        | 0.419                        | 1.82                          | 4.9                         | 92                        | 5.2                         |
| Target Range - Lower Bound        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.285                          | 2.51                       | 22.8                          | 9.2                          | 8                          | 12.5                         | 224                                   | 1.19                          | 0.09                          | 16.90                        | 0.353                        | 1.43                          | 4.5                         | 77                        | 3.9                         |
| Upper Bound                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.575                          | 3.09                       | 31.0                          | 11.4                         | 14                         | 15.7                         | 274                                   | 1.57                          | 0.31                          | 20.7                         | 0.443                        | 1.98                          | 5.8                         | 97                        | 5.4                         |
| OGGeo08<br>OGGeo08                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                            |                               |                              |                            |                              |                                       |                               |                               |                              |                              |                               |                             |                           |                             |
| Target Range - Lower B            | ound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |                            |                               |                              |                            |                              |                                       |                               |                               |                              |                              |                               |                             |                           |                             |
| Upper B                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                            |                               |                              |                            |                              |                                       |                               |                               |                              |                              |                               |                             |                           |                             |
| OREAS 503c                        | ound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | l):                            |                            |                               |                              |                            |                              |                                       |                               |                               |                              |                              |                               |                             |                           |                             |
| OREAS 503c                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                            |                               |                              |                            |                              |                                       |                               |                               |                              |                              |                               |                             |                           |                             |
| Target Range - Lower B            | ound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |                            |                               |                              |                            |                              |                                       |                               |                               |                              |                              |                               |                             |                           |                             |
| Upper B                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                            |                               |                              |                            |                              |                                       |                               |                               |                              |                              |                               |                             |                           |                             |
| OREAS 604                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                              |                            |                               |                              |                            |                              |                                       |                               |                               |                              |                              |                               |                             |                           |                             |
| Target Range - Lower B<br>Upper B | of the latest to |                                |                            |                               |                              |                            |                              |                                       |                               |                               |                              |                              |                               |                             |                           |                             |
| OREAS 621                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                            |                               |                              |                            |                              |                                       |                               |                               |                              |                              |                               |                             |                           |                             |
| Target Range - Lower B<br>Upper B |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                              |                            |                               |                              |                            |                              |                                       |                               |                               |                              |                              |                               |                             |                           |                             |
| OREAS 905                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.002                        | 0.07                       | 2.21                          | 5.4                          | 3                          | 4.3                          | 169.0                                 | 1.39                          | 0.06                          | 14.85                        | 0.129                        | 0.78                          | 5.4                         | 10                        | 3.1                         |
| OREAS 905                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 0.002                        | 0.07                       | 2.02                          | 5.0                          | 2                          | 3.8                          | 160.0                                 | 1.30                          | 0.13                          | 14.30                        | 0.123                        | 0.77                          | 5.1                         | 10                        | 2.8                         |
| OREAS 905                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.002                          | 0.07                       | 1.98                          | 5.0                          | 3                          | 4.0                          | 160.0                                 | 1.33                          | 0.09                          | 14.95                        | 0.125                        | 0.71                          | 4.8                         | 10                        | 2.7                         |
| Target Range - Lower B            | The state of the s | <0.002                         | 0.04                       | 1.61                          | 4.3                          | <1                         | 3.4                          | 141.0                                 | 1.16                          | < 0.05                        | 13,15                        | 0.105                        | 0.59                          | 4.4                         | 8                         | 2.3                         |
| Upper B                           | ound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.004                          | 0.09                       | 2.29                          | 5.5                          | 5                          | 4.6                          | 173.0                                 | 1.52                          | 0.19                          | 16.05                        | 0.139                        | 0.85                          | 5.6                         | 13                        | 3.3                         |
| OREAS 920<br>OREAS 920            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <0.002<br><0.002               | 0.03                       | 1.44                          | 14.6<br>14.2                 | 1                          | 4.5<br>5.5                   | 85.1<br>85.8                          | 1.20                          | <0.05                         | 18.50<br>19.60               | 0.469<br>0.516               | 0.98                          | 3.6<br>4.0                  | 97<br>107                 | 3.2                         |
| Target Range - Lower B            | found                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.002                         | < 0.04                     | 1.72                          | 12.8                         | <1                         | 4.3                          | 73.6                                  | 1.08                          | <0.05                         | 17.35                        | 0.434                        | 0.76                          | 3.3                         | 86                        | 2.5                         |
| Upper B                           | 4-1.71 LID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.002                          | 0.05                       | 1.76                          | 15.8                         | 2                          | 5.7                          | 90.4                                  | 1.43                          | 0.10                          | 21.2                         | 0.542                        | 1.08                          | 4.2                         | 108                       | 3.7                         |
| OREAS 932                         | Odila                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.50%                          | 0.00                       | 1.70                          | 10.0                         | -                          |                              |                                       |                               | 4.14                          |                              |                              |                               | 71.00                       |                           | 9.1                         |
| OREAS 932                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                            |                               |                              |                            |                              |                                       |                               |                               |                              |                              |                               |                             |                           |                             |
| Target Range - Lower B<br>Upper B |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                            |                               |                              |                            |                              |                                       |                               |                               |                              |                              |                               |                             |                           |                             |
| OREAS- 133b                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                            |                               |                              |                            |                              |                                       |                               |                               |                              |                              |                               |                             |                           |                             |
| Target Range - Lower B            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                            |                               |                              |                            |                              |                                       |                               |                               |                              |                              |                               |                             |                           |                             |
| Upper B                           | lound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                |                            |                               |                              |                            |                              |                                       |                               |                               |                              |                              |                               |                             |                           |                             |
| OREAS- 133b                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                            |                               |                              |                            |                              |                                       |                               |                               |                              |                              |                               |                             |                           |                             |
| OREAS- 133b                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                            |                               |                              |                            |                              |                                       |                               |                               |                              |                              |                               |                             |                           |                             |
| Target Range - Lower B            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                            |                               |                              |                            |                              |                                       |                               |                               |                              |                              |                               |                             |                           |                             |
| Upper B                           | ound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                |                            |                               |                              |                            |                              |                                       |                               |                               |                              |                              |                               |                             |                           |                             |
| OREAS- 134b                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |                            |                               |                              |                            |                              |                                       |                               |                               |                              |                              |                               |                             |                           |                             |



To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR RENO NV 89501 Page: 3 - D Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018 Account: RECPER

| QC CERTIFICATE OF | ANALYSIS | RE18026217 |
|-------------------|----------|------------|
|-------------------|----------|------------|

| Sample Description     | Method<br>Analyte<br>Units<br>LOR     | ME- MS61<br>Y<br>ppm<br>0.1 | ME- MS61<br>Zn<br>ppm<br>2 | ME-MS61<br>Zr<br>ppm<br>0,5 | Ag- OG62<br>Ag<br>ppm<br>1 | Cu- OG62<br>Cu<br>%<br>0.001 | Pb- OG62<br>Pb<br>%<br>0.001 | Zn- OG62<br>Zn<br>%<br>0.001 | Au- ICP21<br>Au<br>ppm<br>0.001 | Au- GRA21<br>Au<br>ppm<br>0.05 |  |  |
|------------------------|---------------------------------------|-----------------------------|----------------------------|-----------------------------|----------------------------|------------------------------|------------------------------|------------------------------|---------------------------------|--------------------------------|--|--|
|                        |                                       |                             |                            |                             |                            |                              | STAN                         | DARDS                        |                                 |                                |  |  |
| DGGeo08                | - 0                                   | 24.0                        | 6980                       | 100.0                       |                            |                              |                              |                              |                                 |                                |  |  |
| OGGeo08                |                                       | 22.8                        | 7620                       | 98.9                        |                            |                              |                              |                              |                                 |                                |  |  |
| Target Range - Lower I | Bound                                 | 21.1                        | 6500                       | 78.6                        |                            |                              |                              |                              |                                 |                                |  |  |
| Upper F                | Bound                                 | 26.0                        | 7950                       | 107.5                       |                            |                              |                              |                              |                                 |                                |  |  |
| OGGeo08                |                                       |                             |                            |                             | 19                         |                              | 0.720                        | 0.731                        |                                 |                                |  |  |
| OGGeo08                |                                       |                             |                            |                             | 20                         | 0.852                        | 0.729                        | 0.742                        |                                 |                                |  |  |
| Target Range - Lower I |                                       |                             |                            |                             | 18                         | 0.809                        | 0.698                        | 0.696                        |                                 |                                |  |  |
| Upper E                | Bound                                 |                             |                            |                             | 22                         | 0.869                        | 0.750                        | 0.748                        | 8 127                           |                                |  |  |
| OREAS 503c             |                                       |                             |                            |                             |                            |                              |                              |                              | 0.694                           |                                |  |  |
| OREAS 503c             |                                       |                             |                            |                             |                            |                              |                              |                              | 0.682                           |                                |  |  |
| Target Range - Lower I |                                       |                             |                            |                             |                            |                              |                              |                              | 0.655                           |                                |  |  |
| Upper I                | Bound                                 |                             |                            |                             | 400                        | 0.40                         | 0.400                        |                              | 0.741                           |                                |  |  |
| OREAS 604              |                                       |                             |                            |                             | 489                        | 2.19                         | 0.103                        |                              |                                 |                                |  |  |
| Target Range - Lower I |                                       |                             |                            |                             | 473                        |                              |                              |                              |                                 |                                |  |  |
| Upper I                | Bound                                 |                             |                            |                             | 509                        | 0.000                        | 1.365                        |                              |                                 |                                |  |  |
| OREAS 621              | Daniel                                |                             |                            |                             | 71<br>66                   | 0.365                        | 1,310                        |                              |                                 |                                |  |  |
| Target Range - Lower I |                                       |                             |                            |                             | 72                         |                              | 1.410                        |                              |                                 |                                |  |  |
| Upper F<br>OREAS 905   | Bound                                 | 17.6                        | 151                        | 277                         | 12                         |                              | 1.410                        |                              |                                 |                                |  |  |
| OREAS 905              |                                       | 16.2                        | 143                        | 255                         |                            |                              |                              |                              |                                 |                                |  |  |
| OREAS 905              |                                       | 16.1                        | 140                        | 255                         |                            |                              |                              |                              |                                 |                                |  |  |
| Target Range - Lower I | Pound                                 | 14.0                        | 122                        | 214                         |                            |                              |                              |                              |                                 |                                |  |  |
| Upper E                |                                       | 17.4                        | 154                        | 290                         |                            |                              |                              |                              |                                 |                                |  |  |
| OREAS 920              | bound                                 | 33.1                        | 122                        | 159.0                       |                            |                              |                              |                              |                                 |                                |  |  |
| OREAS 920              |                                       | 35.5                        | 127                        | 164.0                       |                            |                              |                              |                              |                                 |                                |  |  |
| Target Range - Lower I | Round                                 | 29.8                        | 102                        | 128.0                       |                            |                              |                              |                              |                                 |                                |  |  |
| Upper I                |                                       | 36.6                        | 130                        | 174.0                       |                            |                              |                              |                              |                                 |                                |  |  |
| OREAS 932              | S S S S S S S S S S S S S S S S S S S | 99,9                        | ,                          | 17.31.50                    | 23                         |                              | 0.031                        | 0.077                        |                                 |                                |  |  |
| OREAS 932              |                                       |                             |                            |                             | 31                         | 6.08                         | 0.029                        | 0.075                        |                                 |                                |  |  |
| Target Range - Lower I | Bound                                 |                             |                            |                             | 20                         | 5,91                         | 413.00                       | 2000                         |                                 |                                |  |  |
| Upper I                |                                       |                             |                            |                             | 24                         | 6.35                         |                              |                              |                                 |                                |  |  |
| OREAS- 133b            | 10 07,171                             |                             |                            |                             | 102                        | 0.67.00                      |                              |                              |                                 |                                |  |  |
| Target Range - Lower I | Bound                                 |                             |                            |                             | 99                         |                              |                              |                              |                                 |                                |  |  |
| Upper I                | Bound                                 |                             |                            |                             | 109                        |                              |                              |                              |                                 |                                |  |  |
| OREAS-133b             |                                       |                             |                            |                             | 100                        |                              | 5.04                         | 11.35                        |                                 |                                |  |  |
| OREAS- 133b            |                                       |                             |                            |                             | 102                        | 0.034                        | 5.16                         | 11.60                        |                                 |                                |  |  |
| Target Range - Lower I | Bound                                 |                             |                            |                             | 99                         | 0.030                        | 4.88                         | 10.95                        |                                 |                                |  |  |
| Upper I                |                                       |                             |                            |                             | 109                        | 0.034                        | 5.24                         | 11.75                        |                                 |                                |  |  |
| OREAS-134b             |                                       |                             |                            |                             | 203                        |                              | 13.35                        | 18.15                        |                                 |                                |  |  |



To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR RENO NV 89501 Page: 4 - A Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018 Account: RECPER

|                                                                                                                                                             | ,                                         |                                                           |                                                            |                                                    |                                               |                                                             |                                                       |                                                            | QC                                                          | CERTIF                                                 | ICATE                                                       | OF AN                                  | ALYSIS                                                      | RE18                                             | 302621                                                     | 7                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|
| ample Description                                                                                                                                           | Method<br>Analyte<br>Units<br>LOR         | ME- MS61<br>Ag<br>ppm<br>0.01                             | ME- MS61<br>Al<br>%<br>0.01                                | ME- MS61<br>As<br>ppm<br>0.2                       | ME-MS61<br>Ba<br>ppm<br>10                    | ME- MS61<br>Be<br>ppm<br>0.05                               | ME- MS61<br>Bi<br>ppm<br>0.01                         | ME- MS61<br>Ca<br>%<br>0.01                                | ME- MS61<br>Cd<br>ppm<br>0.02                               | ME- MS61<br>Ce<br>ppm<br>0.01                          | ME- MS61<br>Co<br>ppm<br>0.1                                | ME- MS61<br>Cr<br>ppm<br>1             | ME-MS61<br>Cs<br>ppm<br>0.05                                | ME- MS61<br>Cu<br>ppm<br>0.2                     | ME- MS61<br>Fe<br>%<br>0.01                                | ME- MS6<br>Ga<br>ppm<br>0.05                                |
|                                                                                                                                                             |                                           |                                                           |                                                            |                                                    |                                               |                                                             | STAN                                                  | DARDS                                                      |                                                             |                                                        |                                                             |                                        |                                                             |                                                  |                                                            |                                                             |
| DREAS-134b Farget Range - Lower Upper FF59 Farget Range - Lower Upper GQ48                                                                                  | Bound<br>Bound<br>Bound                   |                                                           |                                                            |                                                    |                                               |                                                             |                                                       |                                                            |                                                             |                                                        |                                                             |                                        |                                                             |                                                  |                                                            |                                                             |
| Farget Range - Lower<br>Upper                                                                                                                               |                                           |                                                           |                                                            |                                                    |                                               |                                                             |                                                       |                                                            |                                                             |                                                        |                                                             |                                        |                                                             |                                                  |                                                            |                                                             |
|                                                                                                                                                             |                                           |                                                           |                                                            |                                                    |                                               |                                                             | RL                                                    | ANKS                                                       |                                                             |                                                        |                                                             |                                        |                                                             |                                                  |                                                            |                                                             |
| BLANK                                                                                                                                                       |                                           |                                                           |                                                            |                                                    |                                               |                                                             | DL                                                    | 111123                                                     |                                                             |                                                        |                                                             |                                        |                                                             |                                                  |                                                            |                                                             |
| Farget Range - Lower<br>Upper<br>BLANK<br>BLANK<br>Farget Range - Lower<br>Upper<br>BLANK<br>BLANK<br>BLANK                                                 | Bound<br>Bound                            |                                                           |                                                            |                                                    |                                               |                                                             |                                                       |                                                            |                                                             |                                                        |                                                             |                                        |                                                             |                                                  |                                                            |                                                             |
| Farget Range - Lower                                                                                                                                        |                                           |                                                           |                                                            |                                                    |                                               |                                                             |                                                       |                                                            |                                                             |                                                        |                                                             |                                        |                                                             |                                                  |                                                            |                                                             |
| Upper BLANK BLANK BLANK BLANK Farget Range - Lower Upper | Sound<br>Sound<br>Sound<br>Sound<br>Sound | <0.01<br><0.01<br><0.01<br>0.01<br><0.01<br><0.01<br>0.02 | <0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br>0.02 | 0.2<br><0.2<br><0.2<br>0.3<br><0.2<br><0.2<br><0.4 | <10<br><10<br><10<br><10<br><10<br><10<br><20 | <0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05 | 0.01<br>0.01<br>0.01<br>0.01<br>0.01<br><0.01<br>0.02 | <0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br>0.02 | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.04 | 0.01<br>0.03<br>0.02<br>0.27<br><0.01<br><0.01<br>0.02 | <0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br>0.2 | <1<br><1<br><1<br><1<br><1<br><1<br><2 | <0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05 | <0.2<br>0.2<br>0.3<br>0.4<br><0.2<br><0.2<br>0.4 | <0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br>0.02 | <0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.01 |



ALS USA Inc. 4977 Energy Way Reno NV 89502

Phone: +1 775 356 5395 Fax: +1 775 355 0179

www.alsglobal.com/geochemistry

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR RENO NV 89501 Page: 4 - B Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018 Account: RECPER

|                                                                |                                   | -                             |                              |                                |                            |                              |                              |                             |                            |                               | 1.51.21.61                  | OF AN                        |                              | RE18                       |                              |                             |
|----------------------------------------------------------------|-----------------------------------|-------------------------------|------------------------------|--------------------------------|----------------------------|------------------------------|------------------------------|-----------------------------|----------------------------|-------------------------------|-----------------------------|------------------------------|------------------------------|----------------------------|------------------------------|-----------------------------|
| A                                                              | Method<br>Inalyte<br>Units<br>LOR | ME- MS61<br>Ge<br>ppm<br>0.05 | ME- MS61<br>Hf<br>ppm<br>0.1 | ME- MS61<br>In<br>ppm<br>0.005 | ME- MS61<br>K<br>%<br>0.01 | ME- MS61<br>La<br>ppm<br>0.5 | ME- MS61<br>Li<br>ppm<br>0.2 | ME- MS61<br>Mg<br>%<br>0.01 | ME- MS61<br>Mn<br>ppm<br>5 | ME- MS61<br>Mo<br>ppm<br>0.05 | ME- MS61<br>Na<br>%<br>0.01 | ME- MS61<br>Nb<br>ppm<br>0.1 | ME- MS61<br>Ni<br>ppm<br>0.2 | ME- MS61<br>P<br>ppm<br>10 | ME- MS61<br>Pb<br>ppm<br>0.5 | ME- MS6<br>Rb<br>ppm<br>0.1 |
|                                                                |                                   |                               |                              |                                |                            |                              | STAN                         | DARDS                       |                            |                               |                             |                              |                              |                            |                              |                             |
| OREAS- 134b<br>Farget Range - Lower Bo<br>Upper Bo             |                                   |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                            |                              |                             |
| SP59<br>Farget Range - Lower Bo<br>Upper Bo                    | und                               |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                            |                              |                             |
| SQ48<br>Farget Range - Lower Bo                                | und                               |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                            |                              |                             |
| Upper Bo                                                       | una                               |                               |                              |                                |                            |                              | RI /                         | ANKS                        |                            |                               |                             |                              |                              |                            |                              |                             |
|                                                                |                                   | -                             |                              |                                |                            |                              | DLA                          | AINKS                       |                            |                               |                             |                              |                              |                            |                              |                             |
| BLANK<br>Farget Range - Lower Bo<br>Upper Bo<br>BLANK<br>BLANK |                                   |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                            |                              |                             |
| Target Range - Lower Bo<br>Upper Bo<br>BLANK<br>BLANK          |                                   |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                            |                              |                             |
| BLANK<br>Target Range - Lower Bo                               | und                               |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                            |                              |                             |
| Upper Bo                                                       | und                               |                               |                              |                                | 2.20                       |                              | 2.5                          | 222                         | 0.5                        | 0.00                          | 15.55                       | 4.5                          | .04                          | 712                        | 10                           |                             |
| BLANK<br>BLANK                                                 |                                   | 0.06                          | <0.1<br><0.1                 | <0.005<br><0.005               | <0.01                      | <0.5<br><0.5                 | 0.2                          | <0.01                       | <5<br><5                   | <0.05<br><0.05                | <0.01<br><0.01              | <0.1                         | <0.2<br><0.2                 | <10<br><10                 | 0.7                          | <0.1                        |
| BLANK                                                          |                                   | 0.06                          | <0.1                         | < 0.005                        | < 0.01                     | <0.5                         | 0.2                          | < 0.01                      | <5                         | <0.05                         | <0.01                       | <0.1                         | <0.2                         | <10                        | <0.5                         | 0.1                         |
| BLANK                                                          |                                   | 0.06                          | < 0.1                        | < 0.005                        | < 0.01                     | <0.5                         | < 0.2                        | < 0.01                      | <5                         | < 0.05                        | < 0.01                      | <0.1                         | <0.2                         | <10                        | 1.0                          | < 0.1                       |
| BLANK                                                          | li med                            | <0.05<br><0.05                | <0.1<br><0.1                 | <0.005<br><0.005               | <0.01<br><0.01             | <0.5<br><0.5                 | 0.2<br><0.2                  | <0.01                       | <5<br><5                   | <0.05<br><0.05                | <0.01<br><0.01              | <0.1<br><0.1                 | <0.2<br><0.2                 | <10<br><10                 | <0.5                         | <0.1                        |
| Target Range - Lower Bo<br>Upper Bo                            |                                   | 0.10                          | 0.2                          | 0.010                          | 0.02                       | 1.0                          | 0.4                          | 0.02                        | 10                         | 0.10                          | 0.02                        | 0.2                          | 0.4                          | 20                         | <0.5<br>1.0                  | 0.2                         |
| BLANK                                                          |                                   |                               |                              |                                |                            |                              |                              |                             |                            | 21110                         | 71.2                        | 7,77                         | 270.0                        | -7                         | 100                          |                             |
| Target Range - Lower Bo<br>Upper Bo                            |                                   |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                            |                              |                             |
| BLANK                                                          |                                   |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                            |                              |                             |
| BLANK<br>Target Range - Lower Bo<br>Upper Bo                   |                                   |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                            |                              |                             |



4977 Energy Way Reno NV 89502

Phone: +1 775 356 5395 Fax: +1 775 355 0179

www.alsglobal.com/geochemistry

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR **RENO NV 89501** 

Page: 4 - C Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018

Account: RECPER

| (ALS                                                                         | -/                                     |                                                                   |                                                            |                                                       |                                                    |                                    |                                                      |                                                      | QC                                                          | CERTII                                                      | ICATE                                                    | OF AN                                                             | ALYSIS                                                              | RE18                                         | 302621                           | 7                                                   |
|------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------|----------------------------------|-----------------------------------------------------|
| Sample Descripti                                                             | Method<br>Analyte<br>Units<br>ON LOR   | ME- MS61<br>Re<br>ppm<br>0.002                                    | ME- MS61<br>S<br>%<br>0.01                                 | ME- MS61<br>Sb<br>ppm<br>0.05                         | ME- MS61<br>Sc<br>ppm<br>0.1                       | ME- MS61<br>Se<br>ppm<br>1         | ME- MS61<br>Sn<br>ppm<br>0.2                         | ME- MS61<br>Sr<br>ppm<br>0.2                         | ME-MS61<br>Ta<br>ppm<br>0.05                                | ME- MS61<br>Te<br>ppm<br>0.05                               | ME-MS61<br>Th<br>ppm<br>0.01                             | ME- MS61<br>Ti<br>%<br>0.005                                      | ME-MS61<br>TI<br>ppm<br>0.02                                        | ME- MS61<br>U<br>ppm<br>0.1                  | ME- MS61<br>V<br>ppm<br>1        | ME- MS6<br>W<br>ppm<br>0.1                          |
|                                                                              |                                        |                                                                   |                                                            |                                                       |                                                    |                                    | STAN                                                 | DARDS                                                |                                                             |                                                             |                                                          |                                                                   |                                                                     |                                              |                                  |                                                     |
| SP59<br>Target Range - Lo                                                    | pper Bound                             |                                                                   |                                                            |                                                       |                                                    |                                    |                                                      |                                                      |                                                             |                                                             |                                                          |                                                                   |                                                                     |                                              |                                  |                                                     |
| SQ48<br>Target Range - Lo                                                    | wer Bound                              |                                                                   |                                                            |                                                       |                                                    |                                    |                                                      |                                                      |                                                             |                                                             |                                                          |                                                                   |                                                                     |                                              |                                  |                                                     |
|                                                                              | per Bound                              |                                                                   |                                                            |                                                       |                                                    |                                    |                                                      |                                                      |                                                             |                                                             |                                                          |                                                                   |                                                                     |                                              |                                  |                                                     |
|                                                                              |                                        |                                                                   |                                                            |                                                       |                                                    |                                    | BL                                                   | ANKS                                                 |                                                             |                                                             |                                                          |                                                                   |                                                                     |                                              |                                  |                                                     |
| BLANK<br>BLANK<br>Target Range - Lo<br>U<br>BLANK<br>BLANK<br>BLANK<br>BLANK | oper Bound<br>ower Bound<br>oper Bound |                                                                   |                                                            |                                                       |                                                    |                                    |                                                      |                                                      |                                                             |                                                             |                                                          |                                                                   |                                                                     |                                              |                                  |                                                     |
| BLANK<br>BLANK<br>BLANK<br>BLANK<br>BLANK<br>Target Range - Le               | oper Bound                             | <0.002<br><0.002<br><0.002<br><0.002<br><0.002<br><0.002<br>0.004 | <0.01<br><0.01<br><0.01<br><0.01<br><0.01<br><0.01<br>0.02 | 0.06<br>0.05<br>0.05<br>0.05<br>0.05<br>0.09<br><0.05 | <0.1<br><0.1<br><0.1<br>0.1<br>0.1<br><0.1<br><0.1 | 1<br><1<br>1<br>1<br><1<br><1<br>2 | <0.2<br><0.2<br><0.2<br><0.2<br><0.2<br><0.2<br><0.2 | <0.2<br><0.2<br><0.2<br><0.2<br><0.2<br><0.2<br><0.2 | <0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05 | <0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05<br><0.05 | <0.01<br><0.01<br>0.03<br>0.01<br><0.01<br><0.01<br>0.02 | <0.005<br><0.005<br><0.005<br><0.005<br><0.005<br><0.005<br>0.010 | <0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br><0.02<br>0.04 | <0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1 | <1<br><1<br><1<br><1<br><1<br><1 | <0.1<br><0.1<br><0.1<br><0.1<br><0.1<br><0.1<br>0.1 |
| BLANK<br>Target Range - Lo<br>U<br>BLANK<br>BLANK<br>Target Range - Lo       | ower Bound<br>oper Bound               |                                                                   | 1000                                                       |                                                       |                                                    |                                    |                                                      |                                                      |                                                             |                                                             |                                                          |                                                                   |                                                                     |                                              |                                  |                                                     |



4977 Energy Way Reno NV 89502 Phone: +1 775 356 5395 Fax: +1 775 355 0179 www.alsglobal.com/geochemistry

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR **RENO NV 89501** 

Page: 4 - D Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018 Account: RECPER

| QC CERTIFICATE OF | ANALYSIS | RE18026217 |
|-------------------|----------|------------|
|-------------------|----------|------------|

| Method<br>Analyte<br>Units<br>LOR         | ME- MS61<br>Y<br>ppm<br>0.1 | ME- MS61<br>Zn<br>ppm<br>2 | ME- MS61<br>Zr<br>ppm<br>0.5 | Ag- OG62<br>Ag<br>ppm<br>1 | Cu- OG62<br>Cu<br>%<br>0.001 | Pb- OG62<br>Pb<br>%<br>0.001 | Zn- OG62<br>Zn<br>%<br>0.001 | Au- ICP21<br>Au<br>ppm<br>0.001 | Au- GRA21<br>Au<br>ppm<br>0.05 |  |
|-------------------------------------------|-----------------------------|----------------------------|------------------------------|----------------------------|------------------------------|------------------------------|------------------------------|---------------------------------|--------------------------------|--|
|                                           |                             |                            |                              |                            |                              | STAN                         | DARDS                        |                                 |                                |  |
| OREAS- 134b                               |                             |                            |                              | 199                        | 0.136                        | 13.10                        | 17.95                        |                                 |                                |  |
| Farget Range - Lower Bound<br>Upper Bound |                             |                            |                              | 201<br>217                 | 0.129<br>0.141               | 12.90<br>13.85               | 17.40<br>18.65               |                                 |                                |  |
| SP59                                      |                             |                            |                              | 20.77                      | 40.11                        |                              | 14,44                        |                                 | 18.00                          |  |
| Target Range - Lower Bound                |                             |                            |                              |                            |                              |                              |                              |                                 | 17.00                          |  |
| Upper Bound                               |                             |                            |                              |                            |                              |                              |                              |                                 | 19.25                          |  |
| SQ48<br>Target Range - Lower Bound        |                             |                            |                              |                            |                              |                              |                              |                                 | 30.2<br>28.4                   |  |
| Upper Bound                               |                             |                            |                              |                            |                              |                              |                              |                                 | 32.1                           |  |
|                                           |                             |                            |                              |                            |                              | 44.                          |                              |                                 |                                |  |
|                                           |                             |                            |                              |                            |                              | BL                           | ANKS                         |                                 |                                |  |
| BLANK                                     |                             |                            |                              | <1                         |                              |                              |                              |                                 |                                |  |
| Target Range - Lower Bound                |                             |                            |                              | <1                         |                              |                              |                              |                                 |                                |  |
| Upper Bound<br>BLANK                      |                             |                            |                              | 2                          |                              |                              |                              |                                 | < 0.05                         |  |
| BLANK                                     |                             |                            |                              |                            |                              |                              |                              |                                 | < 0.05                         |  |
| Target Range - Lower Bound                |                             |                            |                              |                            |                              |                              |                              |                                 | < 0.05                         |  |
| Upper Bound                               |                             |                            |                              |                            |                              |                              |                              |                                 | 0.10                           |  |
| BLANK                                     |                             |                            |                              |                            |                              |                              |                              | <0.001                          |                                |  |
| BLANK<br>BLANK                            |                             |                            |                              |                            |                              |                              |                              | < 0.002                         |                                |  |
| Target Range - Lower Bound                |                             |                            |                              |                            |                              |                              |                              | <0.001                          |                                |  |
| Upper Bound                               |                             |                            |                              |                            |                              |                              |                              | 0.002                           |                                |  |
| BLANK                                     | <0.1                        | 2                          | <0.5                         |                            |                              |                              |                              |                                 |                                |  |
| BLANK<br>BLANK                            | <0.1                        | <2<br><2                   | <0.5<br><0.5                 |                            |                              |                              |                              |                                 |                                |  |
| BLANK                                     | <0.1                        | <2                         | <0.5                         |                            |                              |                              |                              |                                 |                                |  |
| BLANK                                     | < 0.1                       | <2                         | < 0.5                        |                            |                              |                              |                              |                                 |                                |  |
| Target Range - Lower Bound                | <0.1                        | <2                         | <0.5                         |                            |                              |                              |                              |                                 |                                |  |
| Upper Bound<br>BLANK                      | 0.2                         | 4                          | 1.0                          | <1                         | 0.002                        | <0.001                       |                              |                                 |                                |  |
| BLANK<br>Target Range - Lower Bound       |                             |                            |                              | <1                         | < 0.002                      | <0.001                       |                              |                                 |                                |  |
| Upper Bound                               |                             |                            |                              | 2                          | 0.002                        | 0.002                        |                              |                                 |                                |  |
| BLANK                                     |                             |                            |                              | <1                         |                              | 0.001                        | 0.001                        |                                 |                                |  |
| BLANK                                     |                             |                            |                              | <1                         | 0.001                        | 0.001                        | 0.001                        |                                 |                                |  |
| Target Range - Lower Bound<br>Upper Bound |                             |                            |                              | <1<br>2                    | <0.001                       | <0.001                       | <0.001                       |                                 |                                |  |
| opper Bound                               |                             |                            |                              | 2                          | 0.002                        | 0,002                        | 0.002                        |                                 |                                |  |



4977 Energy Way Reno NV 89502 Phone: +1 775 356 5395 Fax: +1 775 355 0179 www.alsglobal.com/geochemistry

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR **RENO NV 89501** 

Page: 5 - A Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018 Account: RECPER

| (763)                                            |                                   |                               |                              |                              |                              |                                 |                               |                              | QC                            | CERTII                        | ICATE                        | OF AN                      | ALYSIS                        | RE18                         | 302621                       | 7                             |
|--------------------------------------------------|-----------------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|---------------------------------|-------------------------------|------------------------------|-------------------------------|-------------------------------|------------------------------|----------------------------|-------------------------------|------------------------------|------------------------------|-------------------------------|
| Sample Description                               | Method<br>Analyte<br>Units<br>LOR | ME- MS61<br>Ag<br>ppm<br>0.01 | ME- MS61<br>AI<br>%<br>0.01  | ME- MS61<br>As<br>ppm<br>0.2 | ME- MS61<br>Ba<br>ppm<br>10  | ME- MS61<br>Be<br>ppm<br>0.05   | ME- MS61<br>Bi<br>ppm<br>0.01 | ME- MS61<br>Ca<br>%<br>0.01  | ME- MS61<br>Cd<br>ppm<br>0.02 | ME- MS61<br>Ce<br>ppm<br>0.01 | ME- MS61<br>Co<br>ppm<br>0.1 | ME- MS61<br>Cr<br>ppm<br>1 | ME- MS61<br>Cs<br>ppm<br>0.05 | ME- MS61<br>Cu<br>ppm<br>0.2 | ME- MS61<br>Fe<br>%<br>0.01  | ME- MS61<br>Ga<br>ppm<br>0.05 |
| ORIGINAL<br>DUP<br>Target Range - Lower<br>Upper | Bound<br>Bound                    |                               |                              |                              |                              |                                 | DUPL                          | ICATES                       |                               |                               |                              |                            |                               |                              |                              |                               |
| ORIGINAL<br>DUP<br>Target Range - Lower<br>Upper |                                   |                               |                              |                              |                              |                                 |                               |                              |                               |                               |                              |                            |                               |                              |                              |                               |
| X043411<br>DUP<br>Target Range - Lower<br>Upper  |                                   | 3.43<br>3.21<br>3.14<br>3.50  | 8.04<br>7.88<br>7.55<br>8.37 | 6.8<br>6.7<br>6.2<br>7.3     | 1490<br>1450<br>1350<br>1590 | 10.40<br>10.05<br>9.66<br>10.80 | 5.42<br>5.11<br>4.99<br>5.54  | 0.13<br>0.12<br>0.11<br>0.14 | 1.19<br>1.14<br>1.09<br>1.24  | 40.2<br>40.5<br>38.3<br>42.4  | 1.1<br>1.2<br>1.0<br>1.3     | 18<br>17<br>16<br>19       | 3.73<br>3.66<br>3.46<br>3.93  | 315<br>306<br>299<br>322     | 3.41<br>3.31<br>3.18<br>3.54 | 21.7<br>21.5<br>20.5<br>22.7  |
| X043419<br>DUP<br>Target Range - Lower<br>Upper  | Bound<br>Bound                    |                               |                              |                              |                              |                                 |                               |                              |                               |                               |                              |                            |                               |                              |                              |                               |
| X043432<br>DUP<br>Target Range - Lower<br>Upper  | Bound<br>Bound                    |                               |                              |                              |                              |                                 |                               |                              |                               |                               |                              |                            |                               |                              |                              |                               |
| X043434<br>DUP<br>Target Range - Lower<br>Upper  | Bound<br>Bound                    |                               |                              |                              |                              |                                 |                               |                              |                               |                               |                              |                            |                               |                              |                              |                               |
| X043439<br>DUP<br>Target Range - Lower<br>Upper  |                                   |                               |                              |                              |                              |                                 |                               |                              |                               |                               |                              |                            |                               |                              |                              |                               |
| X043446<br>DUP<br>Target Range - Lower<br>Upper  |                                   |                               |                              |                              |                              |                                 |                               |                              |                               |                               |                              |                            |                               |                              |                              |                               |



ALS USA Inc. 4977 Energy Way Reno NV 89502 Phone: +1 775 356 5395 Fax: +1 775 355 0179

www.alsglobal.com/geochemistry

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR **RENO NV 89501** 

Page: 5 - B Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018 Account: RECPER

| (ALS)                                                | 6                                 |                               |                              |                                  |                              |                              |                              |                              | QC                         | CERTII                        | FICATE                       | OF AN                        | ALYSIS                       | RE18                       | 302621                           | 7                            |
|------------------------------------------------------|-----------------------------------|-------------------------------|------------------------------|----------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|----------------------------|-------------------------------|------------------------------|------------------------------|------------------------------|----------------------------|----------------------------------|------------------------------|
| Sample Description                                   | Method<br>Analyte<br>Units<br>LOR | ME- MS61<br>Ge<br>ppm<br>0.05 | ME- MS61<br>Hf<br>ppm<br>0.1 | ME- MS61<br>In<br>ppm<br>0.005   | ME- MS61<br>K<br>%<br>0.01   | ME- MS61<br>La<br>ppm<br>0.5 | ME- MS61<br>Li<br>ppm<br>0.2 | ME- MS61<br>Mg<br>%<br>0.01  | ME- MS61<br>Mn<br>ppm<br>5 | ME- MS61<br>Mo<br>ppm<br>0.05 | ME- MS61<br>Na<br>%<br>0.01  | ME- MS61<br>Nb<br>ppm<br>0.1 | ME- MS61<br>Ni<br>ppm<br>0.2 | ME- MS61<br>P<br>ppm<br>10 | ME- MS61<br>Pb<br>ppm<br>0.5     | ME- MS61<br>Rb<br>ppm<br>0.1 |
| ORIGINAL<br>DUP<br>Target Range - Lower B<br>Upper B |                                   |                               |                              |                                  |                              |                              | DUPL                         | ICATES                       |                            |                               |                              |                              |                              |                            |                                  |                              |
| ORIGINAL<br>DUP<br>Target Range - Lower B<br>Upper B | Bound<br>Bound                    |                               |                              |                                  |                              |                              |                              |                              |                            |                               |                              |                              |                              |                            |                                  |                              |
| X043411<br>DUP<br>Target Range - Lower B<br>Upper B  |                                   | 0.17<br>0.17<br>0.11<br>0.23  | 0.2<br>0.2<br><0.1<br>0.3    | 0.368<br>0.352<br>0.337<br>0.383 | 4.79<br>4.90<br>4.59<br>5.10 | 15.3<br>15.2<br>14.0<br>16.5 | 25.2<br>25.1<br>23.7<br>26.6 | 0.60<br>0.58<br>0.55<br>0.63 | 300<br>290<br>275<br>315   | 1.29<br>1.13<br>1.10<br>1.32  | 1.02<br>1.00<br>0.95<br>1.07 | 5.3<br>5.3<br>4.9<br>5.7     | 6.5<br>6.5<br>6.0<br>7.0     | 900<br>880<br>840<br>940   | 142.0<br>138.0<br>132.5<br>147.5 | 198.5<br>202<br>190.0<br>210 |
| X043419<br>DUP<br>Target Range - Lower B<br>Upper B  |                                   |                               |                              |                                  |                              |                              |                              |                              |                            |                               |                              |                              |                              |                            |                                  |                              |
| X043432<br>DUP<br>Target Range - Lower B<br>Upper B  |                                   |                               |                              |                                  |                              |                              |                              |                              |                            |                               |                              |                              |                              |                            |                                  |                              |
| X043434<br>DUP<br>Target Range - Lower B<br>Upper B  |                                   |                               |                              |                                  |                              |                              |                              |                              |                            |                               |                              |                              |                              |                            |                                  |                              |
| X043439<br>DUP<br>Target Range - Lower B<br>Upper B  |                                   |                               |                              |                                  |                              |                              |                              |                              |                            |                               |                              |                              |                              |                            |                                  |                              |
| X043446<br>DUP<br>Target Range - Lower B<br>Upper B  | Bound<br>Bound                    |                               |                              |                                  |                              |                              |                              |                              |                            |                               |                              |                              |                              |                            |                                  |                              |



ALS USA Inc. 4977 Energy Way Reno NV 89502 www.alsglobal.com/geochemistry

Phone: +1 775 356 5395 Fax: +1 775 355 0179

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR **RENO NV 89501** 

Page: 5 - C Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018 Account: RECPER

OC CERTIFICATE OF ANALYSIS RE18026217

|                                                              |                                     |                              |                               |                              |                            |                              |                              | QC                            | CLIVIII                       | ICATE                         | OI AIN                           | ALISIS                        | IXI-1 C                     | 002021                    | 1                            |
|--------------------------------------------------------------|-------------------------------------|------------------------------|-------------------------------|------------------------------|----------------------------|------------------------------|------------------------------|-------------------------------|-------------------------------|-------------------------------|----------------------------------|-------------------------------|-----------------------------|---------------------------|------------------------------|
| Method<br>Analyte<br>Units<br>LOR                            | ME- MS61<br>Re<br>ppm<br>0.002      | ME- MS61<br>S<br>%<br>0.01   | ME- MS61<br>Sb<br>ppm<br>0.05 | ME- MS61<br>Sc<br>ppm<br>0.1 | ME- MS61<br>Se<br>ppm<br>1 | ME- MS61<br>Sn<br>ppm<br>0.2 | ME- MS61<br>Sr<br>ppm<br>0.2 | ME- MS61<br>Ta<br>ppm<br>0.05 | ME- MS61<br>Te<br>ppm<br>0.05 | ME- MS61<br>Th<br>ppm<br>0.01 | ME- MS61<br>TI<br>%<br>0.005     | ME- MS61<br>TI<br>ppm<br>0.02 | ME- MS61<br>U<br>ppm<br>0.1 | ME- MS61<br>V<br>ppm<br>1 | ME- MS61<br>W<br>ppm<br>0.1  |
| ORIGINAL<br>DUP<br>Target Range - Lower Bound<br>Upper Bound |                                     |                              |                               |                              |                            | DUPL                         | ICATES                       |                               |                               |                               |                                  |                               |                             |                           |                              |
| ORIGINAL<br>DUP<br>Target Range - Lower Bound<br>Upper Bound |                                     |                              |                               |                              |                            |                              |                              |                               |                               |                               |                                  |                               |                             |                           |                              |
| X043411<br>DUP<br>Target Range - Lower Bound<br>Upper Bound  | <0.002<br><0.002<br><0.002<br>0.004 | 0.57<br>0.56<br>0.53<br>0.60 | 0.89<br>0.88<br>0.77<br>1.00  | 8.7<br>8.6<br>8.1<br>9.2     | <1<br>1<br><1<br>2         | 1.2<br>1.2<br>0.9<br>1.5     | 389<br>381<br>366<br>404     | 0.25<br>0.25<br>0.19<br>0.31  | 2.04<br>1.90<br>1.82<br>2.12  | 2.04<br>2.03<br>1.92<br>2.15  | 0.425<br>0.416<br>0.394<br>0.447 | 1.93<br>1.82<br>1.71<br>2.04  | 1.8<br>1.8<br>1.6<br>2.0    | 103<br>99<br>95<br>107    | 36.1<br>35.4<br>33.0<br>38.5 |
| X043419<br>DUP<br>Target Range - Lower Bound<br>Upper Bound  |                                     |                              |                               |                              |                            |                              |                              |                               |                               |                               |                                  |                               |                             |                           |                              |
| X043432<br>DUP<br>Target Range - Lower Bound<br>Upper Bound  |                                     |                              |                               |                              |                            |                              |                              |                               |                               |                               |                                  |                               |                             |                           |                              |
| X043434<br>DUP<br>Target Range - Lower Bound<br>Upper Bound  |                                     |                              |                               |                              |                            |                              |                              |                               |                               |                               |                                  |                               |                             |                           |                              |
| X043439<br>DUP<br>Target Range - Lower Bound<br>Upper Bound  |                                     |                              |                               |                              |                            |                              |                              |                               |                               |                               |                                  |                               |                             |                           |                              |
| X043446<br>DUP<br>Target Range - Lower Bound<br>Upper Bound  |                                     |                              |                               |                              |                            |                              |                              |                               |                               |                               |                                  |                               |                             |                           |                              |



4977 Energy Way Reno NV 89502 Phone: +1 775 356 5395 Fax: +1 775 355 0179 www.alsglobal.com/geochemistry

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR **RENO NV 89501** 

Page: 5 - D Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018 Account: RECPER

| OC CERT                 | CIFICATE    | OF ANALYSIS         | RE18026217 |
|-------------------------|-------------|---------------------|------------|
| The Part Not live I h I | 11 1 2/ 1 1 | 01 / 11 1/ 12 1 010 |            |

| Method<br>Analyte<br>Units<br>LOR                            | ME- MS61<br>Y<br>ppm<br>0.1 | ME- MS61<br>Zn<br>ppm<br>2 | ME- MS61<br>Zr<br>ppm<br>0.5 | Ag- OG62<br>Ag<br>ppm<br>1 | Cu- OG62<br>Cu<br>%<br>0.001 | Pb- OG62<br>Pb<br>%<br>0.001     | Zn- OG62<br>Zn<br>%<br>0.001 | Au- ICP21<br>Au<br>ppm<br>0.001  | Au- GRA21<br>Au<br>ppm<br>0.05 |  |
|--------------------------------------------------------------|-----------------------------|----------------------------|------------------------------|----------------------------|------------------------------|----------------------------------|------------------------------|----------------------------------|--------------------------------|--|
| ORIGINAL<br>DUP<br>Target Range - Lower Bound<br>Upper Bound |                             |                            |                              | 5<br>5<br>4<br>6           |                              | DUPL                             | ICATES                       |                                  |                                |  |
| ORIGINAL<br>DUP<br>Target Range - Lower Bound<br>Upper Bound |                             |                            |                              |                            |                              |                                  |                              | 0.003<br>0.003<br>0.002<br>0.004 |                                |  |
| X043411<br>DUP<br>Target Range - Lower Bound<br>Upper Bound  | 6.3<br>6.0<br>5.7<br>6.6    | 405<br>390<br>376<br>419   | 4.8<br>4.9<br>4.0<br>5.7     |                            |                              |                                  |                              |                                  |                                |  |
| X043419<br>DUP<br>Target Range - Lower Bound<br>Upper Bound  |                             |                            |                              |                            |                              |                                  |                              | 0.304<br>0.309<br>0.290<br>0.323 |                                |  |
| X043432<br>DUP<br>Target Range - Lower Bound<br>Upper Bound  |                             |                            |                              |                            |                              |                                  |                              |                                  | 35.3<br>35.0<br>33.3<br>37.0   |  |
| X043434<br>DUP<br>Target Range - Lower Bound<br>Upper Bound  |                             |                            |                              | 2<br><1<br>3               | 0.470<br>0.457<br>0.483      | 1.110<br>1.080<br>1.065<br>1.125 |                              |                                  |                                |  |
| X043439<br>DUP<br>Target Range - Lower Bound<br>Upper Bound  |                             |                            |                              |                            |                              |                                  |                              | 0.293<br>0.265<br>0.264<br>0.294 |                                |  |
| X043446<br>DUP<br>Target Range - Lower Bound<br>Upper Bound  |                             |                            |                              | 43<br>41<br>45             | 0.715<br>0.696<br>0.734      | 3.38<br>3.30<br>3.26<br>3.42     | 0.056<br>0.054<br>0.058      |                                  |                                |  |



4977 Energy Way Reno NV 89502 Phone: +1 775 356 5395 Fax: +1 775 355 0179 www.alsglobal.com/geochemistry

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR **RENO NV 89501** 

Page: 6 - A Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018

Account: RECPER

| (ALS)                                             |                                   |                               |                               |                              |                            |                                 |                                  |                               | QC                              | CERTIF                        | FICATE                       | OF AN                      | ALYSIS                          | RE18                               | 302621                       | 7                            |
|---------------------------------------------------|-----------------------------------|-------------------------------|-------------------------------|------------------------------|----------------------------|---------------------------------|----------------------------------|-------------------------------|---------------------------------|-------------------------------|------------------------------|----------------------------|---------------------------------|------------------------------------|------------------------------|------------------------------|
| Sample Description                                | Method<br>Analyte<br>Units<br>LOR | ME- MS61<br>Ag<br>ppm<br>0.01 | ME- MS61<br>AI<br>%<br>0.01   | ME- MS61<br>As<br>ppm<br>0.2 | ME-MS61<br>Ba<br>ppm<br>10 | ME- MS61<br>Be<br>ppm<br>0.05   | ME- MS61<br>Bi<br>ppm<br>0.01    | ME- MS61<br>Ca<br>%<br>0.01   | ME- MS61<br>Cd<br>ppm<br>0.02   | ME- MS61<br>Ce<br>ppm<br>0.01 | ME- MS61<br>Co<br>ppm<br>0.1 | ME- MS61<br>Cr<br>ppm<br>1 | ME- MS61<br>Cs<br>ppm<br>0.05   | ME- MS61<br>Cu<br>ppm<br>0.2       | ME- MS61<br>Fe<br>%<br>0.01  | ME- MS6<br>Ga<br>ppm<br>0.05 |
|                                                   |                                   |                               |                               |                              |                            |                                 | DUPL                             | ICATES                        |                                 |                               |                              |                            |                                 |                                    |                              |                              |
| X043447<br>DUP<br>Target Range - Lower<br>Upper   |                                   | 79.0<br>80.2<br>75.6<br>83.6  | 0.42<br>0.43<br>0.39<br>0.46  | 250<br>257<br>241<br>266     | 110<br>110<br>90<br>130    | 0.29<br>0.34<br>0.25<br>0.38    | 47.4<br>49.5<br>46.0<br>50.9     | 0.01<br>0.01<br><0.01<br>0.02 | 0.71<br>0.76<br>0.68<br>0.79    | 6.93<br>7.22<br>6.71<br>7.44  | 0.5<br>0.5<br>0.4<br>0.6     | 17<br>26<br>19<br>24       | 0.14<br>0.14<br>0.08<br>0.20    | >10000<br>>10000<br>9650<br>>10000 | 5.78<br>5.87<br>5.52<br>6.13 | 3.04<br>3.11<br>2.87<br>3.28 |
| X043448<br>DUP<br>Target Range - Lower<br>Upper   |                                   |                               |                               |                              |                            |                                 |                                  |                               |                                 |                               |                              |                            |                                 |                                    |                              |                              |
| X043220<br>DUP<br>Target Range - Lower<br>Upper   |                                   |                               |                               |                              |                            |                                 |                                  |                               |                                 |                               |                              |                            |                                 |                                    |                              |                              |
| X043233<br>DUP<br>Target Range - Lower<br>Upper   |                                   | 48.2<br>51.3<br>47.3<br>52.2  | 0.17<br>0.17<br>0.15<br>0.19  | 421<br>443<br>410<br>454     | 150<br>150<br>130<br>170   | 0.27<br>0.22<br>0.18<br>0.31    | 15.05<br>12.00<br>12.85<br>14.20 | 0.01<br>0.02<br><0.01<br>0.02 | 1.74<br>1.45<br>1.50<br>1.69    | 7.08<br>6.73<br>6.55<br>7.26  | 0.5<br>0.5<br>0.4<br>0.6     | 27<br>25<br>24<br>28       | 0.16<br>0.12<br>0.08<br>0.20    | 299<br>317<br>297<br>319           | 2.18<br>2.30<br>2.12<br>2.36 | 0.81<br>0.72<br>0.68<br>0.85 |
| X043240<br>DUP<br>Target Range - Lower<br>Upper   |                                   |                               |                               |                              |                            |                                 |                                  |                               |                                 |                               |                              |                            |                                 |                                    |                              |                              |
| X043256<br>DUP<br>Target Range - Lower<br>Upper I |                                   |                               |                               |                              |                            |                                 |                                  |                               |                                 |                               |                              |                            |                                 |                                    |                              |                              |
| ORIGINAL<br>DUP<br>Target Range - Lower<br>Upper  |                                   | 0.01<br>0.01<br><0.01<br>0.02 | 0.02<br>0.03<br><0.01<br>0.04 | 0.2<br>0.5<br><0.2<br>0.4    | 10<br>10<br><10<br>20      | <0.05<br><0.05<br><0.05<br>0.10 | 0.01<br>0.01<br><0.01<br>0.02    | 0.01<br>0.01<br><0.01<br>0.02 | <0.02<br><0.02<br><0.02<br>0.04 | 2.48<br>2.29<br>2.26<br>2,51  | 0.2<br>0.2<br><0.1<br>0.3    | 9<br>9<br>8<br>10          | <0.05<br><0.05<br><0.05<br>0.10 | 2.0<br>1.8<br>1.6<br>2.2           | 0.61<br>0.60<br>0.56<br>0.65 | 0.11<br>0.14<br>0.07<br>0.18 |
| ORIGINAL<br>DUP<br>Target Range - Lower<br>Upper  |                                   | 0,04<br>0.05<br>0.03<br>0.06  | 2.73<br>2.78<br>2.61<br>2.90  | 3.7<br>3.8<br>3.4<br>4.1     | 110<br>110<br>90<br>130    | 0.68<br>0.78<br>0.64<br>0.82    | 0.10<br>0.11<br>0.09<br>0.12     | 0.11<br>0.11<br>0.09<br>0.13  | 0.02<br><0.02<br><0.02<br>0.04  | 47.1<br>47.9<br>45.1<br>49.9  | 6.8<br>6.9<br>6.4<br>7.3     | 33<br>31<br>29<br>35       | 1.79<br>1.87<br>1.69<br>1.97    | 31.8<br>33.4<br>31.3<br>33.9       | 1.03<br>1.07<br>0.99<br>1.11 | 6.68<br>6.85<br>6.38<br>7.15 |



4977 Energy Way Reno NV 89502 Phone: +1 775 356 5395 Fax: +1 775 355 0179 www.alsglobal.com/geochemistry

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR **RENO NV 89501** 

Page: 6 - B Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018 Account: RECPER

| (ALS)                                                         |                                 |                              |                                     |                                 |                              |                              |                                 | QC                         | CERTIF                        | ICATE                           | OF AN                        | ALYSIS                       | RE18                       | 302621                             | 7                            |
|---------------------------------------------------------------|---------------------------------|------------------------------|-------------------------------------|---------------------------------|------------------------------|------------------------------|---------------------------------|----------------------------|-------------------------------|---------------------------------|------------------------------|------------------------------|----------------------------|------------------------------------|------------------------------|
| Method<br>Analyte<br>Units<br>LOR                             | ME- MS61<br>Ge<br>ppm<br>0.05   | ME- MS61<br>Hf<br>ppm<br>0.1 | ME- MS61<br>In<br>ppm<br>0.005      | ME- MS61<br>K<br>%<br>0.01      | ME- MS61<br>La<br>ppm<br>0.5 | ME- MS61<br>Li<br>ppm<br>0.2 | ME- MS61<br>Mg<br>%<br>0.01     | ME- MS61<br>Mn<br>ppm<br>5 | ME- MS61<br>Mo<br>ppm<br>0.05 | ME- MS61<br>Na<br>%<br>0.01     | ME- MS61<br>Nb<br>ppm<br>0.1 | ME- MS61<br>Ni<br>ppm<br>0.2 | ME- MS61<br>P<br>ppm<br>10 | ME- MS61<br>Pb<br>ppm<br>0.5       | ME- MS61<br>Rb<br>ppm<br>0.1 |
|                                                               |                                 |                              |                                     |                                 |                              | DUPL                         | ICATES                          |                            |                               |                                 |                              |                              |                            |                                    |                              |
| X043447',<br>DUP<br>Target Range - Lower Bound<br>Upper Bound | 0.10<br>0.07<br><0.05<br>0.10   | <0.1<br><0.1<br><0.1<br>0.2  | 2.29<br>2.42<br>2.23<br>2.48        | 0.06<br>0.06<br>0.05<br>0.07    | 5.1<br>5.3<br>4.4<br>6.0     | 10.2<br>10.0<br>9.4<br>10.8  | 0.01<br>0.01<br><0.01<br>0.02   | 94<br>97<br>86<br>105      | 7.33<br>7.52<br>7.00<br>7.85  | 0.02<br>0.02<br><0.01<br>0.03   | 0.1<br>0.1<br><0.1<br>0.2    | 1.9<br>2.1<br>1.7<br>2.3     | 70<br>60<br>50<br>80       | >10000<br>>10000<br>9500<br>>10000 | 4.2<br>4.5<br>4.0<br>4.7     |
| X043448 *** DUP Target Range - Lower Bound Upper Bound        |                                 |                              |                                     |                                 |                              |                              |                                 |                            |                               |                                 |                              |                              |                            |                                    |                              |
| X043220<br>DUP<br>Target Range - Lower Bound<br>Upper Bound   |                                 |                              |                                     |                                 |                              |                              |                                 |                            |                               |                                 |                              |                              |                            |                                    |                              |
| X043233<br>DUP<br>Target Range - Lower Bound<br>Upper Bound   | 0.11<br>0.08<br><0.05<br>0.10   | <0.1<br>0.1<br><0.1<br>0.2   | 0.634<br>0.526<br>0.546<br>0.614    | 0.15<br>0.14<br>0.13<br>0.16    | 8.0<br>7.9<br>7.1<br>8.8     | 8.8<br>8.4<br>8.0<br>9.2     | 0.01<br>0.01<br><0.01<br>0.02   | 99<br>105<br>92<br>112     | 3.77<br>3.37<br>3.34<br>3.80  | 0.03<br>0.03<br>0.02<br>0.04    | 0.2<br>0.2<br><0.1<br>0.3    | 2.2<br>2.1<br>1.8<br>2.5     | 110<br>120<br>100<br>130   | 2020<br>2120<br>1965<br>2170       | 5.4<br>3.8<br>4.3<br>4.9     |
| X043240<br>DUP<br>Target Range - Lower Bound<br>Upper Bound   |                                 | *                            |                                     |                                 |                              |                              |                                 |                            |                               |                                 |                              |                              |                            |                                    |                              |
| X043256<br>DUP<br>Target Range - Lower Bound<br>Upper Bound   |                                 |                              |                                     |                                 |                              |                              |                                 |                            |                               |                                 |                              |                              |                            |                                    |                              |
| ORIGINAL<br>DUP<br>Target Range - Lower Bound<br>Upper Bound  | <0.05<br><0.05<br><0.05<br>0.10 | 0.8<br>0.7<br>0.6<br>0.9     | <0.005<br><0.005<br><0.005<br>0.010 | <0.01<br><0.01<br><0.01<br>0.02 | 1.4<br>1.3<br>0.8<br>1.9     | 2.3<br>1.7<br>1.7<br>2.3     | <0.01<br><0.01<br><0.01<br>0.02 | 61<br>61<br>53<br>69       | 0.87<br>0.86<br>0.77<br>0.96  | <0.01<br><0.01<br><0.01<br>0.02 | 0.1<br>0.1<br><0.1<br>0.2    | 1.2<br>1.2<br>0.9<br>1.5     | 10<br>10<br><10<br>20      | 0.6<br>0.5<br><0.5<br>1.0          | 0.1<br>0.1<br><0.1<br>0.2    |
| ORIGINAL<br>DUP<br>Target Range - Lower Bound<br>Upper Bound  | 0.10<br>0.10<br><0.05<br>0.16   | 2.5<br>2.6<br>2.3<br>2.8     | 0.014<br>0.015<br>0.009<br>0.020    | 0.58<br>0.59<br>0.55<br>0.62    | 21.8<br>22.7<br>20.6<br>23.9 | 17.0<br>17.0<br>16.0<br>18.1 | 0.24<br>0.24<br>0.22<br>0.26    | 122<br>129<br>114<br>137   | 0.30<br>0.32<br>0.24<br>0.38  | 0.39<br>0.40<br>0.37<br>0.42    | 5.8<br>5.8<br>5.4<br>6.2     | 14.1<br>14.6<br>13.4<br>15.3 | 80<br>80<br>70<br>90       | 5.7<br>7.3<br>5.7<br>7.3           | 36.6<br>37.7<br>35.2<br>39.1 |



4977 Energy Way Reno NV 89502 Phone: + 1 775 356 5395 Fax: +1 775 355 0179 www.alsglobal.com/geochemistry

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR **RENO NV 89501** 

Page: 6 - C Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018

Account: RECPER

| (ALS)                                                        |                                     |                                 |                               |                              |                            |                                     |                              | QC                              | CERTII                           | ICATE                         | OF AN                               | ALYSIS                          | RE18                        | 302621                    | 7                           |
|--------------------------------------------------------------|-------------------------------------|---------------------------------|-------------------------------|------------------------------|----------------------------|-------------------------------------|------------------------------|---------------------------------|----------------------------------|-------------------------------|-------------------------------------|---------------------------------|-----------------------------|---------------------------|-----------------------------|
| Method<br>Analyte<br>Units<br>LOR                            | ME- MS61<br>Re<br>ppm<br>0.002      | ME- MS61<br>S<br>%<br>0.01      | ME- MS61<br>Sb<br>ppm<br>0.05 | ME- MS61<br>Sc<br>ppm<br>0.1 | ME- MS61<br>Se<br>ppm<br>1 | ME- MS61<br>Sn<br>ppm<br>0.2        | ME- MS61<br>Sr<br>ppm<br>0.2 | ME- MS61<br>Ta<br>ppm<br>0.05   | ME- MS61<br>Te<br>ppm<br>0.05    | ME- MS61<br>Th<br>ppm<br>0.01 | ME- MS61<br>Ti<br>%<br>0.005        | ME- MS61<br>TI<br>ppm<br>0.02   | ME- MS61<br>U<br>ppm<br>0.1 | ME- MS61<br>V<br>ppm<br>1 | ME- MS6<br>W<br>ppm<br>0.1  |
|                                                              |                                     |                                 |                               |                              |                            | DUPL                                | ICATES                       |                                 |                                  |                               |                                     |                                 |                             |                           |                             |
| X043447<br>DUP<br>Target Range - Lower Bound<br>Upper Bound  | <0.002<br><0.002<br><0.002<br>0.004 | 1.41<br>1.43<br>1.34<br>1.50    | 21.3<br>22.5<br>20.2<br>23.6  | 1.3<br>1.4<br>1.2<br>1.5     | 3<br>3<br>2<br>4           | 0.7<br>0.7<br>0.5<br>0.9            | 8.1<br>8.4<br>7.6<br>8.9     | <0.05<br><0.05<br><0.05<br>0.10 | 11.05<br>12.00<br>10.90<br>12.15 | 0.37<br>0.39<br>0.35<br>0.41  | <0.005<br><0.005<br><0.005<br>0.010 | 0.03<br>0.04<br><0.02<br>0.04   | 1.0<br>1.1<br>0.9<br>1.2    | 2<br>2<br><1<br>3         | 0.2<br>0.2<br><0.1<br>0.3   |
| X043448<br>DUP<br>Target Range - Lower Bound<br>Upper Bound  |                                     |                                 |                               |                              |                            |                                     |                              |                                 |                                  |                               |                                     |                                 |                             |                           |                             |
| X043220<br>DUP<br>Target Range - Lower Bound<br>Upper Bound  |                                     |                                 |                               |                              |                            |                                     |                              |                                 |                                  |                               |                                     |                                 |                             |                           |                             |
| X043233<br>DUP<br>Target Range - Lower Bound<br>Upper Bound  | <0.002<br><0.002<br><0.002<br>0.004 | 0.32<br>0.34<br>0.30<br>0.36    | 7.27<br>7.26<br>6.67<br>7.86  | 0.4<br>0.4<br>0.3<br>0.5     | 1<br>1<br><1<br>2          | 0.4<br>0.4<br><0.2<br>0.6           | 20.9<br>19.0<br>18.8<br>21.1 | <0.05<br><0.05<br><0.05<br>0.10 | 8.27<br>7.72<br>7.55<br>8.44     | 0.45<br>0.39<br>0.39<br>0.45  | 0.005<br>0.005<br><0.005<br>0.010   | 0.04<br>0.03<br><0.02<br>0.04   | 0.7<br>0.5<br>0.5<br>0.7    | 4<br>4<br>3<br>5          | 0.5<br>0.3<br>0.3<br>0.5    |
| X043240<br>DUP<br>Target Range - Lower Bound<br>Upper Bound  |                                     |                                 |                               |                              |                            |                                     |                              |                                 |                                  |                               |                                     |                                 |                             |                           |                             |
| X043256<br>DUP<br>Target Range - Lower Bound<br>Upper Bound  |                                     |                                 |                               |                              |                            |                                     |                              |                                 |                                  |                               |                                     |                                 |                             |                           |                             |
| ORIGINAL<br>DUP<br>Target Range - Lower Bound<br>Upper Bound | 0.002<br><0.002<br><0.002<br>0.004  | 0.01<br>0.01<br><0.01<br>0.02   | 0.09<br>0.11<br><0.05<br>0.16 | 0.1<br>0.1<br><0.1<br>0.2    | <1<br><1<br><1<br>2        | <0.2<br><0.2<br><0.2<br><0.2<br>0.4 | 1,9<br>1.8<br>1.6<br>2.1     | <0.05<br><0.05<br><0.05<br>0.10 | <0.05<br><0.05<br><0.05<br>0.10  | 0.31<br>0.29<br>0.28<br>0.33  | 0.006<br>0.006<br><0.005<br>0.010   | <0.02<br><0.02<br><0.02<br>0.04 | 0.2<br>0.2<br><0.1<br>0.3   | 3<br>3<br>2<br>4          | <0.1<br><0.1<br><0.1<br>0.2 |
| ORIGINAL<br>DUP<br>Target Range - Lower Bound<br>Upper Bound | <0.002<br><0.002<br><0.002<br>0.004 | <0.01<br><0.01<br><0.01<br>0.02 | 0.25<br>0.23<br>0.17<br>0.31  | 4.2<br>4.3<br>3.9<br>4.6     | 1<br>1<br><1<br>2          | 2.0<br>1.9<br>1.7<br>2.2            | 31.7<br>32.6<br>30.3<br>34.0 | 0.42<br>0.42<br>0.35<br>0.49    | <0.05<br><0.05<br><0.05<br>0.10  | 5.46<br>5.66<br>5.27<br>5.85  | 0.190<br>0.191<br>0.176<br>0.205    | 0.19<br>0.21<br>0.17<br>0.24    | 1.8<br>1.8<br>1.6<br>2.0    | 36<br>36<br>33<br>39      | 0.7<br>0.9<br>0.6<br>1.0    |



4977 Energy Way Reno NV 89502 Phone: +1 775 356 5395 Fax: +1 775 355 0179 www.alsglobal.com/geochemistry To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR RENO NV 89501 Page: 6 - D Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018 Account: RECPER

| (703)                                                        |                              |                            |                              |                            |                              |                              |                              | QC                               | CERTIFICATE OF ANALYSIS RE18026217 |
|--------------------------------------------------------------|------------------------------|----------------------------|------------------------------|----------------------------|------------------------------|------------------------------|------------------------------|----------------------------------|------------------------------------|
| Method<br>Analyte<br>Units<br>LOR                            | ME- MS61<br>Y<br>ppm<br>0.1  | ME- MS61<br>Zn<br>ppm<br>2 | ME- MS61<br>Zr<br>ppm<br>0.5 | Ag- OG62<br>Ag<br>ppm<br>I | Cu- OG62<br>Cu<br>%<br>0.001 | Pb- OG62<br>Pb<br>%<br>0.001 | Zn- OG62<br>Zn<br>%<br>0.001 | Au- ICP21<br>Au<br>ppm<br>0.001  | Au- GRA21<br>Au<br>ppm<br>0.05     |
|                                                              |                              |                            |                              |                            |                              | DUPL                         | ICATES                       |                                  |                                    |
| X043447<br>DUP<br>Target Range - Lower Bound<br>Upper Bound  | 2.0<br>2.1<br>1.8<br>2.3     | 404<br>412<br>386<br>430   | 0.7<br>0.8<br><0.5<br>1.0    |                            |                              |                              |                              |                                  |                                    |
| X043448<br>DUP<br>Target Range - Lower Bound<br>Upper Bound  |                              |                            |                              |                            |                              |                              |                              | 0.966<br>1.625<br>1.230<br>1.360 |                                    |
| X043220<br>DUP<br>Target Range - Lower Bound<br>Upper Bound  |                              |                            |                              |                            |                              |                              |                              | 0.108<br>0.117<br>0.106<br>0.119 |                                    |
| X043233<br>DUP<br>Target Range - Lower Bound<br>Upper Bound  | 0.5<br>0.5<br>0.4<br>0.6     | 177<br>185<br>170<br>192   | 0.8<br>0.8<br><0.5<br>1.0    |                            |                              |                              |                              |                                  |                                    |
| X043240<br>DUP<br>Target Range - Lower Bound<br>Upper Bound  |                              |                            |                              |                            |                              |                              |                              | 0.035<br>0.035<br>0.032<br>0.038 |                                    |
| X043256<br>DUP<br>Target Range - Lower Bound<br>Upper Bound  |                              |                            |                              |                            |                              |                              |                              | 2.45<br>2.45<br>2.33<br>2.57     |                                    |
| ORIGINAL<br>DUP<br>Target Range - Lower Bound<br>Upper Bound | 1.8<br>1.7<br>1.6<br>1.9     | 2<br>2<br><2<br>4          | 26.8<br>26.4<br>24.1<br>29.1 |                            |                              |                              |                              |                                  |                                    |
| ORIGINAL<br>DUP<br>Target Range - Lower Bound<br>Upper Bound | 10.4<br>10.9<br>10.0<br>11.3 | 29<br>30<br>26<br>33       | 86.7<br>90.4<br>81.4<br>95.7 |                            |                              |                              |                              |                                  |                                    |



4977 Energy Way Reno NV 89502 Phone: +1 775 356 5395 Fax: +1 775 355 0179 www.alsglobal.com/geochemistry

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR **RENO NV 89501** 

Page: 7 - A Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018 Account: RECPER

| (ALS)                       | ,                                 |                               |                             |                              |                             |                               |                               |                             | QC                            | CERTIF                        | ICATE                        | OF AN                      | ALYSIS                        | RE18                        | 302621                      | 7                            |
|-----------------------------|-----------------------------------|-------------------------------|-----------------------------|------------------------------|-----------------------------|-------------------------------|-------------------------------|-----------------------------|-------------------------------|-------------------------------|------------------------------|----------------------------|-------------------------------|-----------------------------|-----------------------------|------------------------------|
| Sample Description          | Method<br>Analyte<br>Units<br>LOR | ME- MS61<br>Ag<br>ppm<br>0.01 | ME- MS61<br>AI<br>%<br>0.01 | ME- MS61<br>As<br>ppm<br>0.2 | ME- MS61<br>Ba<br>ppm<br>10 | ME- MS61<br>Be<br>ppm<br>0.05 | ME- MS61<br>Bi<br>ppm<br>0.01 | ME- MS61<br>Ca<br>%<br>0.01 | ME- MS61<br>Cd<br>ppm<br>0.02 | ME- MS61<br>Ce<br>ppm<br>0.01 | ME- MS61<br>Co<br>ppm<br>0.1 | ME- MS61<br>Cr<br>ppm<br>1 | ME- MS61<br>Cs<br>ppm<br>0.05 | ME-MS61<br>Cu<br>ppm<br>0.2 | ME- MS61<br>Fe<br>%<br>0.01 | ME- MS6<br>Ga<br>ppm<br>0.05 |
|                             |                                   |                               |                             |                              |                             |                               | PREP DI                       | JPLICAT                     | ES                            |                               |                              |                            |                               |                             |                             |                              |
| X043207<br>X043207 PREP DUP |                                   | 8.68<br>9.80                  | 7.16<br>7.47                | 86.9<br>94.4                 | 210<br>220                  | 5.04<br>5.18                  | 14.10<br>14.40                | 0.03                        | 0.23<br>0.25                  | >500<br>500                   | 0.8<br>0.7                   | 8                          | 1.27                          | 106.5<br>110.0              | 3.34<br>3.45                | 27.1<br>26.1                 |
|                             |                                   |                               |                             |                              |                             |                               |                               |                             |                               |                               |                              |                            |                               |                             |                             |                              |
|                             |                                   |                               |                             |                              |                             |                               |                               |                             |                               |                               |                              |                            |                               |                             |                             |                              |
|                             |                                   |                               |                             |                              |                             |                               |                               |                             |                               |                               |                              |                            |                               |                             |                             |                              |
|                             |                                   |                               |                             |                              |                             |                               |                               |                             |                               |                               |                              |                            |                               |                             |                             |                              |
|                             |                                   |                               |                             |                              |                             |                               |                               |                             |                               |                               |                              |                            |                               |                             |                             |                              |
|                             |                                   |                               |                             |                              |                             |                               |                               |                             |                               |                               |                              |                            |                               |                             |                             |                              |
|                             |                                   |                               |                             |                              |                             |                               |                               |                             |                               |                               |                              |                            |                               |                             |                             |                              |
|                             |                                   |                               |                             |                              |                             |                               |                               |                             |                               |                               |                              |                            |                               |                             |                             |                              |
|                             |                                   |                               |                             |                              |                             |                               |                               |                             |                               |                               |                              |                            |                               |                             |                             |                              |
|                             |                                   |                               |                             |                              |                             |                               |                               |                             |                               |                               |                              |                            |                               |                             |                             |                              |
|                             |                                   |                               |                             |                              |                             |                               |                               |                             |                               |                               |                              |                            |                               |                             |                             |                              |
|                             |                                   |                               |                             |                              |                             |                               |                               |                             |                               |                               |                              |                            |                               |                             |                             |                              |



4977 Energy Way Reno NV 89502 Phone: +1 775 356 5395 Fax: +1 775 355 0179 www.alsglobal.com/geochemistry

200 SOUTH VIRGINIA ST 8TH FLOOR **RENO NV 89501** 

Page: 7 - B Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018

Account: RECPER

Project: NEW ENTERPRISE

To: PERSHING RECOURCES

| (ALS,                       |                                   |                               |                              |                                |                            |                              |                              |                             | QC                         | CERTIF                        | ICATE                       | OF AN                        | ALYSIS                       | RE18                      | 302621                      | 7                           |
|-----------------------------|-----------------------------------|-------------------------------|------------------------------|--------------------------------|----------------------------|------------------------------|------------------------------|-----------------------------|----------------------------|-------------------------------|-----------------------------|------------------------------|------------------------------|---------------------------|-----------------------------|-----------------------------|
| Sample Description          | Method<br>Analyte<br>Units<br>LOR | ME- MS61<br>Ge<br>ppm<br>0.05 | ME- MS61<br>Hf<br>ppm<br>0.1 | ME- MS61<br>In<br>ppm<br>0.005 | ME- MS61<br>K<br>%<br>0.01 | ME- MS61<br>La<br>ppm<br>0.5 | ME- MS61<br>Li<br>ppm<br>0.2 | ME- MS61<br>Mg<br>%<br>0.01 | ME- MS61<br>Mn<br>ppm<br>5 | ME- MS61<br>Mo<br>ppm<br>0.05 | ME- MS61<br>Na<br>%<br>0.01 | ME- MS61<br>Nb<br>ppm<br>0.1 | ME- MS61<br>Ni<br>ppm<br>0.2 | ME-MS61<br>P<br>ppm<br>10 | ME-MS61<br>Pb<br>ppm<br>0.5 | ME- MS6<br>Rb<br>ppm<br>0.1 |
|                             |                                   |                               |                              |                                |                            |                              | PREP DU                      | JPLICAT                     | ES                         |                               |                             |                              |                              |                           |                             |                             |
| X043207<br>X043207 PREP DUP |                                   | 0.43<br>0.68                  | 0.7<br>0.8                   | 0.754<br>0.729                 | 4.40<br>4.51               | 261<br>252                   | 17,5<br>15.9                 | 0.69<br>0.69                | 232<br>236                 | 4.22<br>4.42                  | 0.05<br>0.05                | 17.0<br>18.3                 | 1.0<br>0.9                   | 720<br>750                | 1350<br>1425                | 305<br>319                  |
|                             |                                   |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                           |                             |                             |
|                             |                                   |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                           |                             |                             |
|                             |                                   |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                           |                             |                             |
|                             |                                   |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                           |                             |                             |
|                             |                                   |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                           |                             |                             |
|                             |                                   |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                           |                             |                             |
|                             |                                   |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                           |                             |                             |
|                             |                                   |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                           |                             |                             |
|                             |                                   |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                           |                             |                             |
|                             |                                   |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                           |                             |                             |
|                             |                                   |                               |                              |                                |                            |                              |                              |                             |                            |                               |                             |                              |                              |                           |                             |                             |



4977 Energy Way Reno NV 89502 Phone: +1 775 356 5395 Fax: +1 775 355 0179

www.alsglobal.com/geochemistry

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR **RENO NV 89501** 

Page: 7 - C Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018

Account: RECPER

|                             |                                   |                                |                            |                               |                              |                            |                              |                              | QC                            | CERTIF                        | ICATE                         | OF AN                        | ALYSIS                        | RE18                        | 802621                    | 7                           |
|-----------------------------|-----------------------------------|--------------------------------|----------------------------|-------------------------------|------------------------------|----------------------------|------------------------------|------------------------------|-------------------------------|-------------------------------|-------------------------------|------------------------------|-------------------------------|-----------------------------|---------------------------|-----------------------------|
| Sample Description          | Method<br>Analyte<br>Units<br>LOR | ME- MS61<br>Re<br>ppm<br>0.002 | ME- MS61<br>S<br>%<br>0.01 | ME- MS61<br>Sb<br>ppm<br>0.05 | ME- MS61<br>Sc<br>ppm<br>0.1 | ME- MS61<br>Se<br>ppm<br>1 | ME- MS61<br>Sn<br>ppm<br>0.2 | ME- MS61<br>Sr<br>ppm<br>0.2 | ME- MS61<br>Ta<br>ppm<br>0.05 | ME- MS61<br>Te<br>ppm<br>0.05 | ME- MS61<br>Th<br>ppm<br>0.01 | ME- MS61<br>Ti<br>%<br>0.005 | ME- MS61<br>TI<br>ppm<br>0.02 | ME- MS61<br>U<br>ppm<br>0.1 | ME- MS61<br>V<br>ppm<br>1 | ME- MS61<br>W<br>ppm<br>0.1 |
|                             |                                   |                                |                            |                               |                              |                            | PREP DI                      | JPLICAT                      | ES                            |                               |                               |                              |                               |                             |                           |                             |
| X043207<br>X043207 PREP DUP |                                   | 0.003<br><0.002                | 0.71<br>0.74               | 11.55<br>11.50                | 9.7<br>9.7                   | 4                          | 5.5<br>5.9                   | 105.5<br>105.0               | 1,44<br>1.57                  | 3.88<br>4.52                  | 18.10<br>18.05                | 0.284<br>0.293               | 1.54<br>1.48                  | 2.9<br>2.9                  | 58<br>60                  | 16.0<br>17.8                |
|                             |                                   |                                |                            |                               |                              |                            |                              |                              |                               |                               |                               |                              |                               |                             |                           |                             |
|                             |                                   |                                |                            |                               |                              |                            |                              |                              |                               |                               |                               |                              |                               |                             |                           |                             |
|                             |                                   |                                |                            |                               |                              |                            |                              |                              |                               |                               |                               |                              |                               |                             |                           |                             |
|                             |                                   |                                |                            |                               |                              |                            |                              |                              |                               |                               |                               |                              |                               |                             |                           |                             |
|                             |                                   |                                |                            |                               |                              |                            |                              |                              |                               |                               |                               |                              |                               |                             |                           |                             |
|                             |                                   |                                |                            |                               |                              |                            |                              |                              |                               |                               |                               |                              |                               |                             |                           |                             |
|                             |                                   |                                |                            |                               |                              |                            |                              |                              |                               |                               |                               |                              |                               |                             |                           |                             |
|                             |                                   |                                |                            |                               |                              |                            |                              |                              |                               |                               |                               |                              |                               |                             |                           |                             |
|                             |                                   |                                |                            |                               |                              |                            |                              |                              |                               |                               |                               |                              |                               |                             |                           |                             |
|                             |                                   |                                |                            |                               |                              |                            |                              |                              |                               |                               |                               |                              |                               |                             |                           |                             |
|                             |                                   |                                |                            |                               |                              |                            |                              |                              |                               |                               |                               |                              |                               |                             |                           |                             |
|                             |                                   |                                |                            |                               |                              |                            |                              |                              |                               |                               |                               |                              |                               |                             |                           |                             |



To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR RENO NV 89501 Page: 7 - D Total # Pages: 7 (A - D) Plus Appendix Pages Finalized Date: 17- FEB- 2018 Account: RECPER

| (763                        |                                   |                             |                            |                              |                            |                              |                              |                              | QC                              | CERTIFICATE OF A               | NALYSIS | RE18026217 |
|-----------------------------|-----------------------------------|-----------------------------|----------------------------|------------------------------|----------------------------|------------------------------|------------------------------|------------------------------|---------------------------------|--------------------------------|---------|------------|
| Sample Description          | Method<br>Analyte<br>Units<br>LOR | ME- MS61<br>Y<br>ppm<br>0.1 | ME- MS61<br>Zn<br>ppm<br>2 | ME- MS61<br>Zr<br>ppm<br>0.5 | Ag- OG62<br>Ag<br>ppm<br>1 | Cu- OG62<br>Cu<br>%<br>0.001 | Pb- OG62<br>Pb<br>%<br>0.001 | Zn- OG62<br>Zn<br>%<br>0.001 | Au- ICP21<br>Au<br>ppm<br>0.001 | Au- GRA21<br>Au<br>ppm<br>0.05 |         |            |
|                             |                                   |                             |                            |                              |                            |                              | PREP DU                      | JPLICATI                     | ES                              |                                |         |            |
| X043207<br>X043207 PREP DUP |                                   | 11.0<br>10.2                | 104<br>102                 | 14.9<br>15.1                 |                            |                              |                              |                              | 0.075<br>0.078                  |                                |         |            |
|                             |                                   |                             |                            |                              |                            |                              |                              |                              |                                 |                                |         |            |
|                             |                                   |                             |                            |                              |                            |                              |                              |                              |                                 |                                |         |            |
|                             |                                   |                             |                            |                              |                            |                              |                              |                              |                                 |                                |         |            |
|                             |                                   |                             |                            |                              |                            |                              |                              |                              |                                 |                                |         |            |
|                             |                                   |                             |                            |                              |                            |                              |                              |                              |                                 |                                |         |            |
|                             |                                   |                             |                            |                              |                            |                              |                              |                              |                                 |                                |         |            |
|                             |                                   |                             |                            |                              |                            |                              |                              |                              |                                 |                                |         |            |
|                             |                                   |                             |                            |                              |                            |                              |                              |                              |                                 |                                |         |            |
|                             |                                   |                             |                            |                              |                            |                              |                              |                              |                                 |                                |         |            |
|                             |                                   |                             |                            |                              |                            |                              |                              |                              |                                 |                                |         |            |
|                             |                                   |                             |                            |                              |                            |                              |                              |                              |                                 |                                |         |            |
|                             |                                   |                             |                            |                              |                            |                              |                              |                              |                                 |                                |         |            |



To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR RENO NV 89501 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 17- FEB- 2018 Account: RECPER

Project: NEW ENTERPRISE

QC CERTIFICATE OF ANALYSIS RE18026217

|                    |                                                              | CERTIFICATE COM                                                           | MENTS                                  |                                |
|--------------------|--------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------|--------------------------------|
|                    |                                                              |                                                                           | TICAL COMMENTS                         |                                |
| Applies to Method: | REE's may not be totally s<br>ME- MS61                       | oluble in this method.                                                    |                                        |                                |
|                    |                                                              | LABOR                                                                     | ATORY ADDRESSES                        |                                |
| Applies to Method: | Processed at ALS Reno loc<br>Au- GRA21<br>CRU- 31<br>PUL- QC | cated at 4977 Energy Way, Reno, NV, I<br>Au- ICP21<br>CRU- QC<br>SND- ALS | USA.  BAG- 01  LOG- 22  SPL- 21        | CRU- 22c<br>PUL- 32<br>WEI- 21 |
| Applies to Method: | Processed at ALS Vancous<br>Ag- OG62<br>Pb- OG62             | ver located at 2103 Dollarton Hwy, No<br>Cu- OG62<br>Zn- OG62             | rth Vancouver, BC, Canada.<br>ME- MS61 | ME- OG62                       |
|                    |                                                              |                                                                           |                                        |                                |
|                    |                                                              | •                                                                         |                                        |                                |
|                    |                                                              |                                                                           |                                        |                                |
|                    |                                                              |                                                                           |                                        |                                |



4977 Energy Way Reno NV 89502 Phone: +1 775 356 5395 Fax: +1 775 355 0179 www.alsglobal.com/geochemistry To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR RENO NV 89501

Page: 1 Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 5- APR- 2018

Account: RECPER

### CERTIFICATE RE18055575

Project: NEW ENTERPRISE

This report is for 10 Pulp samples submitted to our lab in Reno, NV, USA on 13- MAR- 2018.

The following have access to data associated with this certificate:

JAY ADAMS JIM RENARD ED WALKER

|          | SAMPLE PREPARATION                  |  |
|----------|-------------------------------------|--|
| ALS CODE | DESCRIPTION                         |  |
| FND- 02  | Find Sample for Addn Analysis       |  |
| SND- ALS | Send samples to internal laboratory |  |

|           | ANALYTICAL PROCEDUR          | RES        |
|-----------|------------------------------|------------|
| ALS CODE  | DESCRIPTION                  | INSTRUMENT |
| Au- ICP21 | Au 30g FA ICP- AES Finish    | ICP- AES   |
| ME- MS61  | 48 element four acid ICP- MS |            |

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim 'or deposit has been determined based on the results of assays of multiple samples of geological materials collected by the prospective investor or by a qualified person selected by him/her and based on an evaluation of all engineering data which is available concerning any proposed project. Statement required by Nevada State Law NRS 519

To: PERSHING RECOURCES ATTN: JAY ADAMS 200 SOUTH VIRGINIA ST 8TH FLOOR RENO NV 89501

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

\*\*\*\*\* See Appendix Page for comments regarding this certificate \*\*\*\*\*

Signature:

Hanachi Bouhenchir, Lab Manager



4977 Energy Way Reno NV 89502 Phone: +1 775 356 5395 Fax: +1 775 355 0179

www.alsglobal.com/geochemistry

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR **RENO NV 89501** 

Page: 2 - A Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 5- APR- 2018 Account: RECPER

|                    |                                   |                                 |                               |                             |                              |                             |                               |                               | C                           | ERTIFIC                       | CATE O                        | FANAL                        | YSIS                       | RE180                         | 55575                        |                             |
|--------------------|-----------------------------------|---------------------------------|-------------------------------|-----------------------------|------------------------------|-----------------------------|-------------------------------|-------------------------------|-----------------------------|-------------------------------|-------------------------------|------------------------------|----------------------------|-------------------------------|------------------------------|-----------------------------|
| Sample Description | Method<br>Analyte<br>Units<br>LOR | Au- ICP21<br>Au<br>ppm<br>0.001 | ME- MS61<br>Ag<br>ppm<br>0.01 | ME- MS61<br>AI<br>%<br>0.01 | ME- MS61<br>As<br>ppm<br>0.2 | ME- MS61<br>Ba<br>ppm<br>10 | ME- MS61<br>Be<br>ppm<br>0.05 | ME- MS61<br>Bi<br>ppm<br>0.01 | ME- MS61<br>Ca<br>%<br>0.01 | ME- MS61<br>Cd<br>ppm<br>0.02 | ME- MS61<br>Ce<br>ppm<br>0.01 | ME- MS61<br>Co<br>ppm<br>0.1 | ME- MS61<br>Cr<br>ppm<br>1 | ME- MS61<br>Cs<br>ppm<br>0.05 | ME- MS61<br>Cu<br>ppm<br>0.2 | ME- MS61<br>Fe<br>%<br>0.01 |
| X043404            |                                   | 0.024                           | 0.41                          | 0.90                        | 56.7                         | 120                         | 4.41                          | 2.94                          | 0.04                        | 0.05                          | 11.95                         | 9.2                          | 10                         | 0.83                          | 22.3                         | 12.90                       |
| X043418            |                                   | 1.105                           | 56.9                          | 1.29                        | 962                          | 880                         | 1.82                          | 126.5                         | 0.07                        | 9.95                          | 28.7                          | 0.8                          | 12                         | 1.04                          | 1675                         | 9.53                        |
| X043423            |                                   | 0.054                           | 5.21                          | 7.34                        | 209                          | 1850                        | 5.33                          | 3.39                          | 0.09                        | 10.70                         | 215                           | 2.9                          | 8                          | 2.72                          | 1225                         | 5.08                        |
| X043436            |                                   | 1.430                           | 16.00                         | 0.54                        | 33.2                         | 440                         | 3.09                          | 2.41                          | 0.09                        | 1.22                          | 4.12                          | 0.4                          | 19                         | 0.45                          | 226                          | 2.21                        |
| X043443            |                                   | 0.092                           | 13.55                         | 7.40                        | 30.7                         | 630                         | 5.76                          | 6.73                          | 0.05                        | 3.52                          | 54.3                          | 0.6                          | 33                         | 2.19                          | 555                          | 4.00                        |
| X043208            |                                   | 0.004                           | 0.87                          | 8.92                        | 6.1                          | 2630                        | 3.08                          | 0.28                          | 0.37                        | 3.70                          | 322                           | 1.1                          | 7                          | 4.60                          | 1495                         | 3.88                        |
| X043212            |                                   | 0.026                           | 5.00                          | 9.15                        | 28.4                         | 2430                        | 3.08                          | 0.33                          | 0.24                        | 2.49                          | 203                           | 0.5                          | 7                          | 3.84                          | 1140                         | 4.17                        |
| X043224            |                                   | 0.052                           | 3.06                          | 3.79                        | 6.0                          | 160                         | 3.10                          | 0.88                          | 0.03                        | 0.08                          | 14.95                         | 2.4                          | 12                         | 1.76                          | 80.5                         | 5.24                        |
| X043236            |                                   | 0.220                           | 5.13                          | 7.20                        | 17.6                         | 420                         | 6.01                          | 4.34                          | 0.10                        | 1.08                          | 32.7                          | 0.3                          | 43                         | 2.77                          | 274                          | 4.68                        |
| X043255            |                                   | 0.073                           | 4.20                          | 7.73                        | 33.5                         | 1500                        | 4.93                          | 16.40                         | 0.05                        | 3.35                          | 349                           | 1.5                          | 8                          | 7.40                          | 679                          | 6.61                        |



To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR RENO NV 89501 Page: 2 - B Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 5- APR- 2018

CERTIFICATE OF ANALYSIS RE18055575

Account: RECPER

|                    |                                   |                               |                               |                              |                                |                            |                              |                              |                             |                            |                               | . ,                         |                              |                              |                            |                              |
|--------------------|-----------------------------------|-------------------------------|-------------------------------|------------------------------|--------------------------------|----------------------------|------------------------------|------------------------------|-----------------------------|----------------------------|-------------------------------|-----------------------------|------------------------------|------------------------------|----------------------------|------------------------------|
| Sample Description | Method<br>Analyte<br>Units<br>LOR | ME- MS61<br>Ga<br>ppm<br>0.05 | ME- MS61<br>Ge<br>ppm<br>0.05 | ME- MS61<br>Hf<br>ppm<br>0.1 | ME- MS61<br>In<br>ppm<br>0.005 | ME- MS61<br>K<br>%<br>0.01 | ME- MS61<br>La<br>ppm<br>0.5 | ME- MS61<br>Li<br>ppm<br>0.2 | ME- MS61<br>Mg<br>%<br>0.01 | ME- MS61<br>Mn<br>ppm<br>5 | ME- MS61<br>Mo<br>ppm<br>0.05 | ME- MS61<br>Na<br>%<br>0.01 | ME- MS61<br>Nb<br>ppm<br>0.1 | ME- MS61<br>Ni<br>ppm<br>0.2 | ME- MS61<br>P<br>ppm<br>10 | ME- MS61<br>Pb<br>ppm<br>0.5 |
| X043404            |                                   | 2.00                          | 0.12                          | <0.1                         | 0.008                          | 0.56                       | 4.3                          | 4.4                          | 0.05                        | 187                        | 84.8                          | 0.02                        | 0.4                          | 9.5                          | 290                        | 19.6                         |
| X043418            |                                   | 4.05                          | 0.10                          | 0.1                          | 1.560                          | 0.53                       | 19.2                         | 16.1                         | 0.08                        | 80                         | 70.9                          | 0.15                        | 1.1                          | 2.8                          | 140                        | 6800                         |
| X043423            |                                   | 23.1                          | 0.23                          | 0.5                          | 0.532                          | 5.09                       | 152.5                        | 21.7                         | 0.53                        | 185                        | 25.7                          | 0.04                        | 18.4                         | 4.3                          | 650                        | 436                          |
| X043436            |                                   | 2.55                          | 0.06                          | < 0.1                        | 0.124                          | 0.35                       | 1.9                          | 23.9                         | 0.05                        | 84                         | 7.32                          | 0.03                        | 0.5                          | 2.3                          | 240                        | 3810                         |
| X043443            |                                   | 22.7                          | 0.14                          | 0.2                          | 0.241                          | 4.83                       | 25.4                         | 21.7                         | 0.70                        | 261                        | 3.69                          | 0.07                        | 4.1                          | 2.6                          | 800                        | 764                          |
| X043208            |                                   | 24.1                          | 0.59                          | 1.0                          | 0.095                          | 5.51                       | 164.0                        | 126.5                        | 0.28                        | 27                         | 2.79                          | 0.18                        | 31.7                         | 4.3                          | 930                        | 177.5                        |
| X043212            |                                   | 23.0                          | 0.27                          | 0.4                          | 0.144                          | 5.33                       | 110.5                        | 16.8                         | 0.24                        | 32                         | 3.14                          | 1.00                        | 20.5                         | 2.5                          | 740                        | 381                          |
| X043224            |                                   | 15.50                         | 0.09                          | 0.2                          | 0.042                          | 2.11                       | 6.8                          | 23.2                         | 0.35                        | 148                        | 5.53                          | 0.02                        | 2.1                          | 3.4                          | 280                        | 159.0                        |
| X043236            |                                   | 27.1                          | 0.13                          | 0.4                          | 0.205                          | 4.11                       | 14.6                         | 26.6                         | 0.74                        | 247                        | 3.58                          | 0.05                        | 8.8                          | 1.2                          | 250                        | 644                          |
| X043255            |                                   | 24.0                          | 0.42                          | 0.8                          | 1.185                          | 4.61                       | 170.5                        | 30.7                         | 0.41                        | 71                         | 9.99                          | 0.11                        | 19.6                         | 2.4                          | 900                        | 1655                         |



4977 Energy Way Reno NV 89502 Phone: +1 775 356 539

Phone: +1 775 356 5395 Fax: +1 775 355 0179

www.alsglobal.com/geochemistry

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR RENO NV 89501 Page: 2 - C Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 5- APR-2018

CERTIFICATE OF ANALYSIS RE18055575

Account: RECPER

| Sample Description | Method<br>Analyte<br>Units<br>LOR | ME- MS61<br>Rb<br>ppm<br>0.1 | ME- MS61<br>Re<br>ppm<br>0.002 | ME- MS61<br>S<br>%<br>0.01 | ME- MS61<br>Sb<br>ppm<br>0.05 | ME- MS61<br>Sc<br>ppm<br>0.1 | ME- MS61<br>Se<br>ppm<br>1 | ME- MS61<br>Sn<br>ppm<br>0.2 | ME- MS61<br>Sr<br>ppm<br>0.2 | ME- MS61<br>Ta<br>ppm<br>0.05 | ME- MS61<br>Te<br>ppm<br>0.05 | ME- MS61<br>Th<br>ppm<br>0.01 | ME- MS61<br>Ti<br>%<br>0.005 | ME- MS61<br>TI<br>ppm<br>0.02 | ME- MS61<br>U<br>ppm<br>0.1 | ME- MS61<br>V<br>ppm<br>1 |
|--------------------|-----------------------------------|------------------------------|--------------------------------|----------------------------|-------------------------------|------------------------------|----------------------------|------------------------------|------------------------------|-------------------------------|-------------------------------|-------------------------------|------------------------------|-------------------------------|-----------------------------|---------------------------|
| X043404            |                                   | 23.9                         | 0.004                          | 0.07                       | 1.43                          | 0.8                          | 6                          | 0.2                          | 17.0                         | <0.05                         | 5.71                          | 0.41                          | 0.011                        | 0.18                          | 2.4                         | 10                        |
| X043418            |                                   | 32.6                         | 0.003                          | 1.08                       | 80.1                          | 1.9                          | 2                          | 1.7                          | 95.2                         | 0.06                          | 52.7                          | 5.80                          | 0.022                        | 0.21                          | 2.3                         | 23                        |
| X043423            |                                   | 242                          | 0.003                          | 1.76                       | 5.16                          | 10.3                         | 1                          | 5.6                          | 508                          | 2.15                          | 1.00                          | 20.7                          | 0.289                        | 1.56                          | 2.0                         | 46                        |
| X043436            | - 1                               | 22.7                         | < 0.002                        | 0.35                       | 5.67                          | 1.3                          | <1                         | 0.4                          | 39.5                         | < 0.05                        | 4.65                          | 0.22                          | 0.020                        | 0.12                          | 2.4                         | 16                        |
| X043443            |                                   | 318                          | < 0.002                        | 0.51                       | 1.15                          | 17.2                         | 2                          | 2.4                          | 123.5                        | 0.18                          | 3.94                          | 1.82                          | 0.350                        | 1.63                          | 1.7                         | 126                       |
| X043208            |                                   | 173.5                        | 0.002                          | 0.23                       | 1.82                          | 11.1                         | 1                          | 5.5                          | 1220                         | 2.56                          | 0.07                          | 36.3                          | 0.481                        | 1.47                          | 46.0                        | 50                        |
| X043212            |                                   | 162.0                        | 0.002                          | 0.34                       | 2.82                          | 9.6                          | <1                         | 6.4                          | 620                          | 2.02                          | 0.81                          | 33.8                          | 0.325                        | 1.75                          | 32.5                        | 37                        |
| X043224            |                                   | 176.5                        | < 0.002                        | 0.05                       | 3.43                          | 4.8                          | 1                          | 1.6                          | 80.7                         | 0.11                          | 1.29                          | 1.08                          | 0.105                        | 0.76                          | 3.2                         | 66                        |
| X043236            |                                   | 269                          | < 0.002                        | 0.26                       | 1.60                          | 22.5                         | 1                          | 2.8                          | 63.6                         | 0.39                          | 2.45                          | 1.09                          | 0.442                        | 1.36                          | 2.2                         | 133                       |
| X043255            |                                   | 242                          | 0.020                          | 1.96                       | 1.30                          | 7.2                          | 1                          | 4.3                          | 817                          | 1.51                          | 11.75                         | 22.8                          | 0.361                        | 1.39                          | 1.2                         | 53                        |



To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR RENO NV 89501 Page: 2 - D Total # Pages: 2 (A - D) Plus Appendix Pages Finalized Date: 5- APR- 2018 Account: RECPER

| Part In | on the water | 11-1 | A mgm I | - 05   | AB | ARA | 8 4 | VCIC | F- F- 3 | 00  | less la | ne good to | 79 pm |  |
|---------|--------------|------|---------|--------|----|-----|-----|------|---------|-----|---------|------------|-------|--|
| ( -     | - K          | 111  | AII     | - () - | AI | VA  |     | YSIS | RE1     | all | 2       | 200        | 15    |  |

| Sample Description                                  | Method<br>Analyte<br>Units<br>LOR | ME- MS61<br>W<br>ppm<br>0.1         | ME- MS61<br>Y<br>ppm<br>0.1       | ME- MS61<br>Zn<br>ppm<br>2      | ME- MS61<br>Zr<br>ppm<br>0.5       |  |
|-----------------------------------------------------|-----------------------------------|-------------------------------------|-----------------------------------|---------------------------------|------------------------------------|--|
| (043404<br>(043418<br>(043423<br>(043436<br>(043443 |                                   | 264<br>4.5<br>30.2<br>2.5<br>34.1   | 4.3<br>2.8<br>6.4<br>0.6<br>4.1   | 60<br>842<br>1870<br>221<br>565 | 1.2<br>1.6<br>16.5<br>0.6<br>3.4   |  |
| (043208<br>(043212<br>(043224<br>(043236<br>(043255 |                                   | 5.5<br>38.1<br>10.9<br>48.8<br>25.5 | 27.6<br>13.2<br>1.3<br>3.2<br>6.8 | 280<br>909<br>124<br>146<br>461 | 17.2<br>9.3<br>5.0<br>14.2<br>21.2 |  |
|                                                     |                                   |                                     |                                   |                                 |                                    |  |
|                                                     |                                   |                                     |                                   |                                 |                                    |  |
|                                                     |                                   |                                     |                                   |                                 |                                    |  |
|                                                     |                                   |                                     |                                   |                                 |                                    |  |
|                                                     |                                   |                                     |                                   |                                 | *                                  |  |
|                                                     |                                   |                                     |                                   |                                 | *                                  |  |



To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR RENO NV 89501 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 5- APR- 2018 Account: RECPER

Project: NEW ENTERPRISE

CERTIFICATE OF ANALYSIS RE18055575

|                    |                                            | CERTIFICATE CO                           | OMMENTS                      |  |
|--------------------|--------------------------------------------|------------------------------------------|------------------------------|--|
|                    | DEE's may not be totally solvide           |                                          | LYTICAL COMMENTS             |  |
| Applies to Method: | REE's may not be totally solub<br>ME- MS61 | ole in this method.                      |                              |  |
|                    |                                            | LABO                                     | DRATORY ADDRESSES            |  |
| Applies to Method: | Processed at ALS Reno located Au- ICP21    | d at 4977 Energy Way, Reno, N<br>FND- 02 | V, USA.<br>SND- ALS          |  |
| Applies to Method: | Processed at ALS Vancouver lo              | ocated at 2103 Dollarton Hwy,            | North Vancouver, BC, Canada. |  |
|                    |                                            |                                          |                              |  |
|                    |                                            |                                          |                              |  |
|                    |                                            |                                          |                              |  |
|                    |                                            |                                          |                              |  |
|                    |                                            |                                          |                              |  |
|                    |                                            |                                          |                              |  |
|                    |                                            |                                          |                              |  |
|                    |                                            |                                          |                              |  |
|                    |                                            |                                          |                              |  |
|                    |                                            |                                          |                              |  |



4977 Energy Way Reno NV 89502

Phone: +1 775 356 5395 Fax: +1 775 355 0179

www.alsglobal.com/geochemistry

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR **RENO NV 89501** 

Page: 1 Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 5- APR- 2018

Account: RECPER

### QC CERTIFICATE RE18055575

Project: NEW ENTERPRISE

This report is for 10 Pulp samples submitted to our lab in Reno, NV, USA on

13- MAR- 2018.

The following have access to data associated with this certificate:

JIM RENARD

**ED WALKER** 

|          | SAMPLE PREPARATION                  |                        |
|----------|-------------------------------------|------------------------|
| ALS CODE | DESCRIPTION                         |                        |
| FND- 02  | Find Sample for Addn Analysis       | NAME OF TAXABLE PARTY. |
| SND- ALS | Send samples to internal laboratory |                        |

|           | ANALYTICAL PROCEDUR          | RES        |
|-----------|------------------------------|------------|
| ALS CODE  | DESCRIPTION                  | INSTRUMENT |
| Au- ICP21 | Au 30g FA ICP- AES Finish    | ICP- AES   |
| ME- MS61  | 48 element four acid ICP- MS |            |

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of assays of multiple samples of geological materials collected by the prospective investor or by a qualified person selected by him/her and based on an evaluation of all engineering data which is available concerning any proposed project. Statement required by Nevada State Law NRS 519

To: PERSHING RECOURCES ATTN: JAY ADAMS 200 SOUTH VIRGINIA ST 8TH FLOOR **RENO NV 89501** 

This is the Final Report and supersedes any preliminary report with this certificate number. Results apply to samples as submitted. All pages of this report have been checked and approved for release.

\*\*\*\*\* See Appendix Page for comments regarding this certificate \*\*\*\*\*

Signature:

Hanachi Bouhenchir, Lab Manager



To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR RENO NV 89501 Page: 2 - A
Total # Pages: 3 (A - D)
Plus Appendix Pages
Finalized Date: 5- APR- 2018

Account: RECPER

| (ALS)                                                                                           |                                   |                                                         |                               |                             |                              |                             |                               |                               | QC                          | CERTII                                    | FICATE                        | OF AN                        | ALYSIS                     | RE18                          | 805557                       | 75                          |
|-------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------|-------------------------------|-----------------------------|------------------------------|-----------------------------|-------------------------------|-------------------------------|-----------------------------|-------------------------------------------|-------------------------------|------------------------------|----------------------------|-------------------------------|------------------------------|-----------------------------|
| Sample Description                                                                              | Method<br>Analyte<br>Units<br>LOR | Au- ICP21<br>Au<br>ppm<br>0.001                         | ME- MS61<br>Ag<br>ppm<br>0.01 | ME- MS61<br>Al<br>%<br>0.01 | ME- MS61<br>As<br>ppm<br>0.2 | ME- MS61<br>Ba<br>ppm<br>10 | ME- MS61<br>Be<br>ppm<br>0.05 | ME- MS61<br>Bi<br>ppm<br>0.01 | ME- MS61<br>Ca<br>%<br>0.01 | ME- MS61<br>Cd<br>ppm<br>0.02             | ME- MS61<br>Ce<br>ppm<br>0.01 | ME- MS61<br>Co<br>ppm<br>0.1 | ME- MS61<br>Cr<br>ppm<br>1 | ME- MS61<br>Cs<br>ppm<br>0.05 | ME- MS61<br>Cu<br>ppm<br>0.2 | ME- MS61<br>Fe<br>%<br>0.01 |
|                                                                                                 |                                   |                                                         |                               | ***                         |                              |                             | STAN                          | DARDS                         |                             | 10-40-40-40-40-40-40-40-40-40-40-40-40-40 |                               |                              |                            |                               |                              |                             |
| G913- 10<br>Target Range - Lower<br>Upper<br>JK- 17<br>Target Range - Lower<br>Upper<br>LEA- 16 | Bound<br>Bound                    | 7.15<br>6.66<br>7.52<br>1.925<br>1.875<br>2.12<br>0.507 |                               |                             |                              |                             |                               |                               |                             |                                           |                               |                              |                            |                               |                              |                             |
| Target Range - Lower<br>Upper                                                                   |                                   | 0.470<br>0.532                                          |                               |                             |                              |                             |                               |                               |                             |                                           |                               |                              |                            |                               |                              |                             |
| MRGeo08<br>Target Range - Lower<br>Upper<br>OREAS 503c<br>Target Range - Lower                  | Bound<br>Bound                    | 0.691<br>0.655                                          | 4.08<br>4.00<br>4.92          | 7.55<br>6.64<br>8.14        | 33.4<br>29.5<br>36.5         | 1110<br>920<br>1270         | 3.48<br>2.98<br>3.76          | 0.65<br>0.60<br>0.76          | 2.62<br>2.35<br>2.90        | 2.24<br>2.00<br>2.48                      | 71.9<br>66.2<br>81.0          | 19.4<br>17.7<br>21.9         | 89<br>81<br>102            | 12.15<br>11.20<br>13.80       | 621<br>587<br>675            | 3.95<br>3.55<br>4.37        |
| Upper<br>OREAS 905<br>Target Range - Lower<br>Upper                                             |                                   | 0.741                                                   | 0.54<br>0.46<br>0.58          | 7.59<br>6.67<br>8.17        | 37.6<br>31.0<br>38.4         | 2760<br>2280<br>3110        | 3.20<br>2.69<br>3.39          | 5.95<br>5.14<br>6.30          | 0.60<br>0.52<br>0.66        | 0.38<br>0.30<br>0.42                      | 99.3<br>82.8<br>101.0         | 15.1<br>13.2<br>16.4         | 18<br>16<br>22             | 7.20<br>6.05<br>7.51          | 1530<br>1425<br>1640         | 4.13<br>3.66<br>4.50        |
|                                                                                                 |                                   |                                                         |                               |                             |                              |                             | BL                            | ANKS                          |                             |                                           |                               |                              |                            |                               |                              |                             |
| BLANK<br>BLANK<br>Target Range - Lower<br>Upper<br>BLANK<br>Target Range - Lower<br>Upper       | Bound<br>Bound                    | <0.001<br><0.001<br><0.001<br>0.002                     | <0.01<br><0.01<br>0.02        | <0.01<br><0.01<br>0.02      | 0.2<br><0.2<br>0.4           | <10<br><10<br>20            | <0.05<br><0.05<br>0.10        | 0.02<br><0.01<br>0.02         | <0.01<br><0.01<br>0.02      | <0.02<br><0.02<br>0.04                    | <0.01<br><0.01<br>0.02        | <0.1<br><0.1<br>0.2          | <1<br><1<br>2              | <0.05<br><0.05<br>0.10        | 0.2<br><0.2<br>0.4           | <0.01<br><0.01<br>0.02      |
|                                                                                                 |                                   |                                                         |                               |                             |                              |                             |                               |                               |                             |                                           |                               |                              |                            |                               |                              |                             |



ALS USA Inc. 4977 Energy Way Reno NV 89502 Phone: +1 775 356 5395 Fax: +1 775 355 0179

www.alsglobal.com/geochemistry

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR **RENO NV 89501** 

Page: 2 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 5- APR- 2018

QC CERTIFICATE OF ANALYSIS RE18055575

Account: RECPER

| Sample Description  G913-10 Target Range - Lower Bot Upper Bot |     | ME- MS61<br>Ga<br>ppm<br>0.05 | ME- MS61<br>Ge<br>ppm<br>0.05 | ME- MS61<br>Hf<br>ppm<br>0.1 | ME- MS61<br>In<br>ppm<br>0.005 | ME- MS61<br>K<br>%<br>0.01 | ME- MS61<br>La<br>ppm<br>0.5 | ME- MS61<br>Li<br>ppm | ME- MS61<br>Mg<br>% | ME- MS61<br>Mn | ME- MS61<br>Mo | ME- MS61<br>Na | ME- MS61<br>Nb | ME- MS61<br>Ni | ME- MS61<br>P | ME- MS61<br>Pb |
|----------------------------------------------------------------|-----|-------------------------------|-------------------------------|------------------------------|--------------------------------|----------------------------|------------------------------|-----------------------|---------------------|----------------|----------------|----------------|----------------|----------------|---------------|----------------|
| Target Range - Lower Bou<br>Upper Bou                          |     |                               |                               |                              |                                |                            | 0.5                          | 0.2                   | 0.01                | ppm<br>5       | ppm<br>0.05    | %<br>0.01      | ppm<br>0.1     | ppm<br>0.2     | 10            | ppm<br>0.5     |
| Farget Range - Lower Bou<br>Upper Bou                          |     |                               |                               |                              |                                |                            | STAN                         | DARDS                 |                     |                |                |                | W              |                |               |                |
| Upper Bou                                                      |     |                               |                               |                              |                                |                            |                              |                       |                     |                |                |                |                |                |               |                |
| IV. 17                                                         |     |                               |                               |                              |                                |                            |                              |                       |                     |                |                |                |                |                |               |                |
| JK- 17<br>Target Range - Lower Bou<br>Upper Bou                |     |                               |                               |                              |                                |                            |                              |                       |                     |                |                |                |                |                |               |                |
| LEA- 16<br>Target Range - Lower Bou                            |     |                               |                               |                              |                                |                            |                              |                       |                     |                |                |                |                |                |               |                |
| Upper Bou<br>MRGeo08                                           | and | 20.0                          | 0.18                          | 3.2                          | 0.186                          | 3,23                       | 34.4                         | 34.2                  | 1.32                | 558            | 15.70          | 2.00           | 20.7           | 667            | 1060          | 1090           |
| Target Range - Lower Bou                                       | und | 17.50                         | < 0.05                        | 2.8                          | 0.155                          | 2.79                       | 31.1                         | 29.5                  | 1.17                | 497            | 13.70          | 1.76           | 19.0           | 622            | 930           | 971            |
| Upper Bou                                                      |     | 21.5                          | 0.27                          | 3.6                          | 0.201                          | 3.43                       | 39.1                         | 36.5                  | 1.45                | 619            | 16.75          | 2.18           | 23.4           | 760            | 1160          | 1185           |
| OREAS 503c<br>Target Range - Lower Bou<br>Upper Bou            |     |                               |                               |                              |                                |                            |                              |                       |                     |                |                |                |                |                |               |                |
| OREAS 905                                                      |     | 27.1                          | 0.19                          | 7.4                          | 0.667                          | 3.01                       | 48.8                         | 20.9                  | 0.27                | 381            | 3.53           | 2.47           | 19.0           | 10.1           | 280           | 31.9           |
| Target Range - Lower Bou                                       |     | 22.5                          | < 0.05                        | 6.1                          | 0.571                          | 2.58                       | 40.9                         | 17.8                  | 0.24                | 333            | 2.89           | 2.15           | 16.2           | 8.4            | 200           | 26.9           |
| Upper Bou                                                      | und | 27.7                          | 0.27                          | 7.6                          | 0.709                          | 3.18                       | 51.1                         | 22.2                  | 0.31                | 418            | 3.65           | 2.65           | 20.0           | 10.7           |               | 33.9           |
|                                                                |     |                               |                               |                              |                                |                            | BLA                          | ANKS                  |                     |                |                |                |                |                |               |                |
| BLANK<br>BLANK                                                 |     |                               |                               |                              |                                |                            |                              |                       |                     |                |                |                |                |                |               |                |
| Target Range - Lower Bou<br>Upper Bou                          |     |                               |                               |                              |                                |                            |                              |                       |                     |                |                |                |                |                |               |                |
| BLANK                                                          | mu  | < 0.05                        | < 0.05                        | <0.1                         | < 0.005                        | < 0.01                     | <0.5                         | <0.2                  | < 0.01              | <5             | < 0.05         | <0.01          | <0.1           | <0.2           | <10           | <0.5           |
| Target Range - Lower Bou                                       | und | <0.05                         | < 0.05                        | <0.1                         | <0.005 *                       | <0.01                      | <0.5                         | <0.2                  | <0.01               | <5             | < 0.05         | < 0.01         | <0.1           | <0.2           | <10           | <0.5           |
| Upper Bou                                                      | ind | 0.10                          | 0.10                          | 0.2                          | 0.010                          | 0.02                       | 1.0                          | 0.4                   | 0.02                | 10             | 0.10           | 0.02           | 0.2            | 0.4            | 20            | 1.0            |
|                                                                |     |                               |                               |                              |                                |                            |                              |                       |                     |                |                |                |                |                |               |                |
|                                                                |     |                               |                               |                              |                                |                            |                              |                       |                     |                |                |                |                |                |               |                |
|                                                                |     |                               |                               |                              |                                |                            |                              |                       |                     |                |                |                |                |                |               |                |
|                                                                |     |                               |                               |                              |                                |                            |                              |                       |                     |                |                |                |                |                |               |                |
|                                                                |     |                               |                               |                              |                                |                            |                              |                       |                     |                |                |                |                |                |               |                |
|                                                                |     |                               |                               |                              |                                |                            |                              |                       |                     |                |                |                |                |                |               |                |
|                                                                |     |                               |                               |                              |                                |                            |                              |                       |                     |                |                |                |                |                |               |                |

<sup>\*\*\*\*\*</sup> See Appendix Page for comments regarding this certificate \*\*\*\*\*



To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR RENO NV 89501 Page: 2 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 5- APR- 2018 Account: RECPER

| (ALS                                                |                                   |                              |                                |                            |                               |                              |                            |                              | QC                           | CERTII                        | FICATE                        | OF AN                         | ALYSIS                       | RE18                          | 305557                      | 5                        |
|-----------------------------------------------------|-----------------------------------|------------------------------|--------------------------------|----------------------------|-------------------------------|------------------------------|----------------------------|------------------------------|------------------------------|-------------------------------|-------------------------------|-------------------------------|------------------------------|-------------------------------|-----------------------------|--------------------------|
| Sample Description                                  | Method<br>Analyte<br>Units<br>LOR | ME- MS61<br>Rb<br>ppm<br>0.1 | ME- MS61<br>Re<br>ppm<br>0.002 | ME- MS61<br>S<br>%<br>0.01 | ME- MS61<br>Sb<br>ppm<br>0.05 | ME- MS61<br>Sc<br>ppm<br>0.1 | ME- MS61<br>Se<br>ppm<br>1 | ME- MS61<br>Sn<br>ppm<br>0.2 | ME- MS61<br>Sr<br>ppm<br>0.2 | ME- MS61<br>Ta<br>ppm<br>0.05 | ME- MS61<br>Te<br>ppm<br>0.05 | ME- MS61<br>Th<br>ppm<br>0.01 | ME- MS61<br>Ti<br>%<br>0.005 | ME- MS61<br>TI<br>ppm<br>0.02 | ME- MS61<br>U<br>ppm<br>0.1 | ME- MS6<br>V<br>ppm<br>1 |
|                                                     |                                   |                              |                                | 460                        |                               |                              | STAN                       | DARDS                        |                              |                               |                               |                               |                              |                               |                             |                          |
| G913- 10<br>Target Range - Lower<br>Upper<br>JK- 17 | r Bound<br>r Bound                |                              |                                |                            |                               |                              |                            |                              |                              |                               |                               |                               |                              |                               |                             |                          |
| Target Range - Lower<br>Upper<br>LEA-16             | r Bound                           |                              |                                |                            |                               |                              |                            |                              |                              |                               |                               |                               |                              |                               |                             |                          |
| Target Range - Lower                                | r Bound<br>r Bound                |                              |                                |                            |                               |                              |                            |                              |                              |                               |                               |                               |                              |                               |                             |                          |
| MRGeo08                                             | Dound                             | 187.0                        | 0.010                          | 0.30                       | 4.77                          | 12.1                         | 1                          | 4.2                          | 314                          | 1.53                          | 0.05                          | 18.45                         | 0.500                        | 1.11                          | 5.4                         | 111                      |
| Target Range - Lower                                |                                   | 173.5                        | 0.005                          | 0.27                       | 3.89                          | 11.1                         | <1                         | 3.5                          | 277                          | 1.39                          | < 0.05                        | 17.90                         | 0.443                        | 0.89                          | 4.9                         | 97                       |
|                                                     | r Bound                           | 212                          | 0.013                          | 0.35                       | 5.39                          | 13.7                         | 4                          | 4.7                          | 339                          | 1.81                          | 0.14                          | 21.9                          | 0.553                        | 1.25                          | 6.2                         | 121                      |
| OREAS 503c                                          | . Daniel                          |                              |                                |                            |                               |                              |                            |                              |                              |                               |                               |                               |                              |                               |                             |                          |
| Target Range - Lower                                | r Bound<br>r Bound                |                              |                                |                            |                               |                              |                            |                              |                              |                               |                               |                               |                              |                               |                             |                          |
| OREAS 905                                           | Dound                             | 140.5                        | < 0.002                        | 0.07                       | 2.24                          | 5.4                          | 3                          | 4.2                          | 162.5                        | 1.37                          | 0.07                          | 14.95                         | 0.125                        | 0.77                          | 5.1                         | 10                       |
| Target Range - Lower                                | r Bound                           | 124.0                        | < 0.002                        | 0.04                       | 1.61                          | 4.3                          | <1                         | 3.4                          | 141.0                        | 1.16                          | < 0.05                        | 13.15                         | 0.105                        | 0.59                          | 4.4                         | 8                        |
| Upper                                               | r Bound                           | 152.0                        | 0.004                          | 0.09                       | 2.29                          | 5.5                          | 5                          | 4.6                          | 173.0                        | 1.52                          | 0.19                          | 16.05                         | 0.139                        | 0.85                          | 5.6                         | 13                       |
|                                                     |                                   |                              |                                |                            |                               |                              | BL                         | ANKS                         |                              |                               |                               |                               |                              |                               |                             |                          |
| BLANK                                               |                                   |                              |                                |                            |                               |                              |                            |                              |                              |                               |                               |                               |                              |                               |                             |                          |
| BLANK                                               |                                   |                              |                                |                            |                               |                              |                            |                              |                              |                               |                               |                               |                              |                               |                             |                          |
| Target Range - Lower                                |                                   |                              |                                |                            |                               |                              |                            |                              |                              |                               |                               |                               |                              |                               |                             |                          |
|                                                     | r Bound                           |                              |                                |                            | 0.40                          | -0.1                         | 4                          | -0.0                         | -0.0                         | 70.05                         | -0.05                         | 10.01                         | 10.005                       | -0.00                         | <b>40.4</b>                 | -1                       |
| BLANK<br>Target Range - Lower                       | r Dound                           | <0.1<br><0.1                 | <0.002<br><0.002               | <0.01<br><0.01             | 0.10<br><0.05 *               | <0.1<br><0.1                 | 1 <1                       | <0.2<br><0.2                 | <0.2<br><0.2                 | <0.05<br><0.05                | <0.05<br><0.05                | <0.01<br><0.01                | <0.005<br><0.005             | <0.02<br><0.02                | <0.1<br><0.1                | <1<br><1                 |
|                                                     | r Bound                           | 0.2                          | 0.002                          | 0.02                       | 0.10                          | 0.2                          | 2                          | 0.4                          | 0.4                          | 0.10                          | 0.10                          | 0.02                          | 0.010                        | 0.04                          | 0.2                         | 2                        |
|                                                     |                                   |                              |                                |                            |                               |                              |                            |                              |                              |                               |                               |                               |                              |                               |                             |                          |
|                                                     |                                   |                              |                                |                            |                               |                              |                            |                              |                              |                               |                               |                               |                              |                               |                             |                          |
|                                                     |                                   |                              |                                |                            |                               |                              |                            |                              |                              |                               |                               |                               |                              |                               |                             |                          |
|                                                     |                                   |                              |                                |                            |                               |                              |                            |                              |                              |                               |                               |                               |                              |                               |                             |                          |
|                                                     |                                   |                              |                                |                            |                               |                              |                            |                              |                              |                               |                               |                               |                              |                               |                             |                          |
|                                                     |                                   |                              |                                |                            |                               |                              |                            |                              |                              |                               |                               |                               |                              |                               |                             |                          |
|                                                     |                                   |                              |                                |                            |                               |                              |                            |                              |                              |                               |                               |                               |                              |                               |                             |                          |
|                                                     |                                   |                              |                                |                            |                               |                              |                            |                              |                              |                               |                               |                               |                              |                               |                             |                          |
|                                                     |                                   |                              |                                |                            |                               |                              |                            |                              |                              |                               |                               |                               |                              |                               |                             |                          |
|                                                     |                                   |                              |                                |                            |                               |                              |                            |                              |                              |                               |                               |                               |                              |                               |                             |                          |
|                                                     |                                   |                              |                                |                            |                               |                              |                            |                              |                              |                               |                               |                               |                              |                               |                             |                          |



4977 Energy Way Reno NV 89502 Phone: +1 775 356 5395 Fax: +1 775 355 0179 www.alsglobal.com/geochemistry To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR RENO NV 89501 Page: 2 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 5- APR- 2018 Account: RECPER

| QC CER | RTIFICA | ATF O | FANAL       | YSIS      | RF18       | 3055575 |
|--------|---------|-------|-------------|-----------|------------|---------|
| CC CLI |         | 1 1 1 | S A FIRM FF | - 1 - 1 - | Il form Il |         |

| Sample Description            | Method<br>Analyte<br>Units<br>LOR | ME- MS61<br>W<br>ppm<br>0.1 | ME- MS61<br>Y<br>ppm<br>0.1 | ME- MS61<br>Zn<br>ppm<br>2 | ME- MS61<br>Zr<br>ppm<br>0.5 |           |
|-------------------------------|-----------------------------------|-----------------------------|-----------------------------|----------------------------|------------------------------|-----------|
|                               |                                   |                             |                             |                            |                              | STANDARDS |
| G913-10                       |                                   |                             |                             |                            |                              |           |
| Target Range - Lower          |                                   |                             |                             |                            |                              |           |
| Upper                         | Bound                             |                             |                             |                            |                              |           |
| JK-17<br>Target Range - Lower | Pound                             |                             |                             |                            |                              |           |
| Upper                         | Round                             |                             |                             |                            |                              |           |
| LEA- 16                       |                                   |                             |                             |                            |                              |           |
| Target Range - Lower          | Bound                             |                             |                             |                            |                              |           |
| Upper                         | Bound                             |                             |                             |                            | 706.0                        |           |
| MRGeo08                       | D .                               | 4.8                         | 26.0                        | 798                        | 105.5                        |           |
| Target Range - Lower<br>Upper |                                   | 4.1<br>5.8                  | 23.8<br>29.3                | 722<br>886                 | 92.2<br>126.0                |           |
| OREAS 503c                    | Bound                             | 5.0                         | 29.5                        | 000                        | 120.0                        |           |
| Target Range - Lower          | Bound                             |                             |                             |                            |                              |           |
| Upper                         | Bound                             |                             |                             |                            |                              |           |
| OREAS 905                     |                                   | 2.9                         | 16.0                        | 141                        | 266                          |           |
| Target Range - Lower          |                                   | 2.3                         | 14.0                        | 122                        | 214                          |           |
| Upper                         | Bound                             | 3.3                         | 17.4                        | 154                        | 290                          |           |
|                               |                                   |                             |                             |                            |                              | BLANKS    |
| BLANK                         |                                   |                             |                             |                            |                              |           |
| BLANK                         |                                   |                             |                             |                            |                              |           |
| Target Range - Lower          |                                   |                             |                             |                            |                              |           |
| Upper<br>BLANK                | Bound                             | <0.1                        | <0.1                        | -0                         | 40 F                         |           |
| Target Range - Lower          | Round                             | <0.1                        | <0.1                        | <2<br><2                   | <0.5<br><0.5                 |           |
| Upper                         | Bound                             | 0.2                         | 0.2                         | 4                          | 1.0                          |           |
| Oppor                         | Dound                             |                             |                             |                            | 110                          |           |
|                               |                                   |                             |                             |                            |                              |           |
|                               |                                   |                             |                             |                            |                              |           |
|                               |                                   |                             |                             |                            |                              |           |
|                               |                                   |                             |                             |                            |                              |           |
|                               |                                   |                             |                             |                            |                              |           |
|                               |                                   |                             |                             |                            |                              |           |
|                               |                                   |                             |                             |                            |                              |           |
|                               |                                   |                             |                             |                            |                              |           |
|                               |                                   |                             |                             |                            |                              |           |
|                               |                                   |                             |                             |                            |                              |           |
|                               |                                   |                             |                             |                            |                              |           |



4977 Energy Way Reno NV 89502 Phone: + 1 775 356 5395 Fax: +1 775 355 0179 www.alsglobal.com/geochemistry To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR RENO NV 89501 Page: 3 - A Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 5-APR-2018

Account: RECPER

|                                                  |                                   |                                  |                               |                              |                              |                             |                               |                               | QC                                    | CERTIF                          | FICATE                          | OF AN                        | <u>ALYSIS</u>              | RE1                           | 805557                       | 75                           |
|--------------------------------------------------|-----------------------------------|----------------------------------|-------------------------------|------------------------------|------------------------------|-----------------------------|-------------------------------|-------------------------------|---------------------------------------|---------------------------------|---------------------------------|------------------------------|----------------------------|-------------------------------|------------------------------|------------------------------|
| Sample Description                               | Method<br>Analyte<br>Units<br>LOR | Au- ICP21<br>Au<br>ppm<br>0.001  | ME- MS61<br>Ag<br>ppm<br>0.01 | ME- MS61<br>Al<br>%<br>0.01  | ME- MS61<br>As<br>ppm<br>0.2 | ME- MS61<br>Ba<br>ppm<br>10 | ME- MS61<br>Be<br>ppm<br>0.05 | ME- MS61<br>Bi<br>ppm<br>0.01 | ME- MS61<br>Ca<br>%<br>0.01           | ME- MS61<br>Cd<br>ppm<br>0.02   | ME- MS61<br>Ce<br>ppm<br>0.01   | ME- MS61<br>Co<br>ppm<br>0.1 | ME- MS61<br>Cr<br>ppm<br>1 | ME- MS61<br>Cs<br>ppm<br>0.05 | ME- MS61<br>Cu<br>ppm<br>0.2 | ME- MS61<br>Fe<br>%<br>0.01  |
|                                                  |                                   |                                  |                               |                              |                              |                             | DUPL                          | ICATES                        | · · · · · · · · · · · · · · · · · · · |                                 |                                 |                              |                            |                               |                              |                              |
| ORIGINAL<br>DUP<br>Target Range - Lower<br>Upper | r Bound<br>r Bound                | 0.025<br>0.024<br>0.022<br>0.027 |                               |                              |                              |                             |                               |                               |                                       |                                 |                                 |                              |                            |                               |                              |                              |
| ORIGINAL<br>DUP<br>Target Range - Lower<br>Upper | r Bound<br>r Bound                | 0.014<br>0.014<br>0.012<br>0.016 |                               |                              |                              |                             |                               |                               |                                       |                                 |                                 |                              |                            |                               |                              |                              |
| ORIGINAL<br>DUP<br>Target Range - Lower<br>Upper | r Bound<br>' Bound                | 0.082<br>0.082<br>0.077<br>0.087 |                               |                              |                              |                             |                               |                               |                                       |                                 |                                 |                              |                            |                               |                              |                              |
| ORIGINAL<br>DUP<br>Target Range - Lower<br>Upper | r Bound<br>Bound                  | 0.180<br>0.182<br>0.171<br>0.191 |                               |                              |                              |                             |                               |                               |                                       |                                 |                                 |                              |                            |                               |                              |                              |
| ORIGINAL<br>DUP<br>Target Range - Lower<br>Upper | Bound<br>Bound                    | 0.035<br>0.036<br>0.033<br>0.038 |                               |                              |                              |                             |                               |                               |                                       |                                 |                                 |                              |                            |                               |                              |                              |
| ORIGINAL<br>DUP<br>Target Range - Lower<br>Upper | · Bound<br>· Bound                | 0.144<br>0.054<br>0.093<br>0.105 |                               |                              | •                            |                             |                               |                               |                                       |                                 |                                 |                              |                            |                               |                              |                              |
| ORIGINAL<br>DUP<br>Target Range - Lower<br>Upper | Bound<br>Bound                    |                                  | 0.02<br>0.02<br><0.01<br>0.03 | 6.40<br>6.41<br>6.07<br>6.74 | 10.2<br>9.7<br>9.3<br>10.6   | 270<br>290<br>250<br>310    | 2.23<br>2.30<br>2.10<br>2.43  | 0.32<br>0.31<br>0.29<br>0.34  | 0.48<br>0.48<br>0.45<br>0.51          | <0.02<br><0.02<br><0.02<br>0.04 | 19.65<br>18.70<br>18.20<br>20.1 | 0.3<br>0.3<br>0.2<br>0.4     | 6<br>4<br>4<br>6           | 3.90<br>4.03<br>3.72<br>4.21  | 0.8<br>0.8<br>0.6<br>1.0     | 0.39<br>0.40<br>0.37<br>0.42 |

<sup>\*\*\*\*\*</sup> See Appendix Page for comments regarding this certificate \*\*\*\*\*



4977 Energy Way Reno NV 89502 Phone: +1 775 356 5395 Fax: +1 775 355 0179 www.alsglobal.com/geochemistry

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR **RENO NV 89501** 

Page: 3 - B Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 5- APR- 2018

Account: RECPER

Project: NEW ENTERPRISE

QC CERTIFICATE OF ANALYSIS RE18055575

|                |                                         |                                                                    |                              |                                     |                              |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    | CLIVIII                                                                                                                                                                                                                                  |                                                                         |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                            |                                                                                         |
|----------------|-----------------------------------------|--------------------------------------------------------------------|------------------------------|-------------------------------------|------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
|                | ME- MS61<br>Ga<br>ppm<br>0.05           | ME- MS61<br>Ge<br>ppm<br>0.05                                      | ME- MS61<br>Hf<br>ppm<br>0.1 | ME- MS61<br>In<br>ppm<br>0.005      | ME- MS61<br>K<br>%<br>0.01   | ME- MS61<br>La<br>ppm<br>0.5                                          | ME- MS61<br>Li<br>ppm<br>0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ME- MS61<br>Mg<br>%<br>0.01                                        | ME- MS61<br>Mn<br>ppm<br>5                                                                                                                                                                                                               | ME- MS61<br>Mo<br>ppm<br>0.05                                           | ME- MS61<br>Na<br>%<br>0.01                                                                       | ME- MS61<br>Nb<br>ppm<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ME- MS61<br>Ni<br>ppm<br>0.2                                                         | ME- MS61<br>P<br>ppm<br>10                                                 | ME- MS61<br>Pb<br>ppm<br>0.5                                                            |
|                |                                         |                                                                    |                              |                                     |                              | DUPL                                                                  | ICATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    |                                                                                                                                                                                                                                          |                                                                         |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                            |                                                                                         |
| ound<br>ound   |                                         |                                                                    |                              |                                     |                              |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                          |                                                                         |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                            |                                                                                         |
|                |                                         |                                                                    |                              |                                     |                              |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                          |                                                                         |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                            |                                                                                         |
| ound<br>ound   |                                         |                                                                    |                              |                                     |                              |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                          |                                                                         |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                            |                                                                                         |
|                |                                         |                                                                    |                              |                                     |                              |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                          |                                                                         |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                            |                                                                                         |
|                |                                         |                                                                    |                              |                                     |                              |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                          |                                                                         |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                            |                                                                                         |
| Bound<br>Bound |                                         |                                                                    |                              | •                                   |                              |                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |                                                                                                                                                                                                                                          |                                                                         |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                            |                                                                                         |
| Bound<br>Bound | 16.25<br>16.30<br>15.40<br>17.15        | 0.09<br>0.10<br><0.05<br>0.10                                      | 1.4<br>1.4<br>1.2<br>1.6     | <0.005<br><0.005<br><0.005<br>0.010 | 3.63<br>3.63<br>3.44<br>3.82 | 9.2<br>8.5<br>7.9<br>9.8                                              | 7.5<br>7.4<br>6.9<br>8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.06<br>0.06<br>0.05<br>0.07                                       | 66<br>66<br>58<br>74                                                                                                                                                                                                                     | 0.07<br>0.20<br>0.08<br>0.19                                            | 3.13<br>3.12<br>2.96<br>3.29                                                                      | 1.9<br>1.9<br>1.7<br>2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.8<br>0.7<br>0.5<br>1.0                                                             | 50<br>50<br>40<br>60                                                       | 20.2<br>20.0<br>18.6<br>21.6                                                            |
| 33 33 33       | ound ound ound ound ound ound ound ound | Analyte Ga Units DPP 0.05  Ound Ound Ound Ound Ound Ound Ound Ound | Analyte Units LOR            | Analyte Units Units LOR             | Analyte Units Units LOR      | Analyte Units LOR  Ga Ge Hf In K PPPM PPPM PPPM PPPM PPPM PPPM PPPM P | Ga Ge Hf In K La Analyte Units Units LOR  0.05  0.05  0.05  0.1  0.005  0.01  0.005  0.01  0.005  DUPL  Ound Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound  Ound | Method Ga Ge Hf In K La Li Ppm | Method Ga Ge Hf In K La Li Mg ppm ppm ppm ppm ppm ppm ym ym ppm ym ym ppm ym ym ppm ym ym ym ppm ym ym ym ppm ym | Method Ga Ge Hf In K La Li Mg Mn ppm ppm ppm ppm ppm ppm ppm ppm ppm pp | Method Ga Ge Hf In K La Li Mg Mn Mo ppm ppm ppm ppm ppm ppm ypm ppm ypm ppm ypm ppm ypm ppm ypm y | Method Ga Ge Hf In K La Li Mg Mn Mo Na Ppm ppm ppm ppm ppm y Na Ppm ppm Na Ppm Na Ppm ppm Na Ppm ppm Na Ppm ppm Na Ppm Na Ppm Na Ppm Na Ppm Ppm Na Pp | Method Ga Ge Hf In K La Li Mg Mn Mo Na Nb Dem PPM PPM PPM PPM PPM PPM PPM PPM PPM PP | Method Ga Ge Hf In R La U Mg Mn Mo Na Nb N N N N N N N N N N N N N N N N N | Method Ga Ge Hf In K La U Mg Mn Mo Na Nb Ni Ppm ppm ppm ppm ppm ppm y ppm ppm y ppm ppm |



To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR **RENO NV 89501** 

Page: 3 - C Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 5- APR- 2018

Account: RECPER

Project: NEW ENTERPRISE

QC CERTIFICATE OF ANALYSIS RE18055575

|                                   |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                               |                                                  |                            | <u> </u>                                              |                                                                                     | CEIVIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10/112                                                                        | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , (L 1 313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30337                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|--------------------------------------------------|----------------------------|-------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Method<br>Analyte<br>Units<br>LOR | ME- MS61<br>Rb<br>ppm<br>0.1                                                                                                   | ME- MS61<br>Re<br>ppm<br>0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ME- MS61<br>S<br>%<br>0.01    | ME- MS61<br>Sb<br>ppm<br>0.05 | ME- MS61<br>Sc<br>ppm<br>0.1                     | ME- MS61<br>Se<br>ppm<br>1 | ME- MS61<br>Sn<br>ppm<br>0.2                          | ME- MS61<br>Sr<br>ppm<br>0.2                                                        | ME- MS61<br>Ta<br>ppm<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ME- MS61<br>Te<br>ppm<br>0.05                                                 | ME- MS61<br>Th<br>ppm<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ME- MS61<br>Ti<br>%<br>0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ME- MS61<br>Tl<br>ppm<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ME- MS61<br>U<br>ppm<br>0.1                                                                                                                                                                                                                               | ME- MS61<br>V<br>ppm<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Bound<br>Bound                    |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                               |                                                  | DUPL                       | ICATES                                                |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bound<br>Bound                    |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                               | · · · · · · · · · · · · · · · · · · ·            |                            |                                                       |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bound<br>Bound                    |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                               | <del>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</del> |                            | kannan kannan di kankan na                            |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | en de de la companya                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bound<br>Bound                    |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                               |                                                  |                            |                                                       |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bound<br>Bound                    |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                               |                                                  |                            |                                                       |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bound<br>Bound                    |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               | •                             |                                                  |                            |                                                       |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Bound<br>Bound                    | 98.7<br>98.9<br>93.8<br>104.0                                                                                                  | <0.002<br><0.002<br><0.002<br>0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.02<br>0.02<br><0.01<br>0.03 | 0.45<br>0.43<br>0.36<br>0.52  | 1.3<br>1.2<br>1.1<br>1.4                         | <1<br>1<br><1<br>2         | 0.8<br>0.7<br>0.5<br>1.0                              | 93.9<br>95.2<br>89.6<br>99.5                                                        | 0.47<br>0.44<br>0.38<br>0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <0.05<br><0.05<br><0.05<br>0.10                                               | 14.35<br>13.95<br>13.45<br>14.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.011<br>0.011<br><0.005<br>0.017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.53<br>0.49<br>0.45<br>0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.3<br>5.3<br>4.9<br>5.7                                                                                                                                                                                                                                  | 1<br>1<br><1<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                   |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                               |                                                  |                            |                                                       |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                   | Analyte Units LOR  Bound | Bound | Analyte Units LOR             | Analyte Units Units           | ## Rb                                            | Analyte Units Units LOR    | Analyte Units ppm ppm ppm % ppm ppm ppm ppm ppm ppm p | Analyte Units Units   Rb   Re   S   Sb   Sc   Se   Sn   Sn   Sn   Sn   Sn   Sn   Sn | Method   M | Method Analyte   Method Rb   Method Rb   Re   S   Sb   Sc   Se   Sn   Sr   Ta | Method Analyte   Meth | Method Analyte   Meth | Round Sound Soun | Method Analyte Rb Re S Sb Sc Se Sn Sr Ta Te Th Ti Ti Ti Ti Units Units O.1 0.002 0.01 0.05 0.1 1 0.2 0.2 0.2 0.05 0.05 0.01 0.005 0.02 0.02 0.01 0.05 0.1 1 0.2 0.2 0.2 0.05 0.05 0.01 0.005 0.02 0.02 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.005 0.00 0.00 | Method Analyte Rb Ra S Sb Sc Se Sn S Ta Te Th Ti Ti U U U U D C 1 0.002 0.01 0.05 0.1 1 0.02 0.2 0.01 0.05 0.1 1 0.02 0.2 0.01 0.05 0.1 1 0.02 0.2 0.05 0.05 0.05 0.01 0.005 0.02 0.1 1 0.002 0.01 0.05 0.1 1 0.02 0.2 0.05 0.05 0.05 0.01 0.005 0.02 0.1 1 0.002 0.01 0.005 0.01 0.005 0.02 0.1 1 0.002 0.01 0.005 0.01 0.005 0.02 0.1 1 0.002 0.01 0.005 0.01 0.005 0.02 0.1 1 0.002 0.01 0.005 0.02 0.1 1 0.002 0.01 0.005 0.01 0.005 0.02 0.1 1 0.002 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0. |

<sup>\*\*\*\*\*</sup> See Appendix Page for comments regarding this certificate \*\*\*\*\*



4977 Energy Way Reno NV 89502 Phone: + 1 775 356 5395 Fax: + 1 775 355 0179 www.alsglobal.com/geochemistry

To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR **RENO NV 89501** 

Page: 3 - D Total # Pages: 3 (A - D) Plus Appendix Pages Finalized Date: 5- APR- 2018

Account: RECPER

| QC CERTIFICATE OF ANALYSIS | RE18055575 |
|----------------------------|------------|
|----------------------------|------------|

| Sample Description                                   | Method<br>Analyte<br>Units<br>LOR | ME- MS61<br>W<br>ppm<br>0.1 | ME- MS61<br>Y<br>ppm<br>0.1 | ME- MS61<br>Zn<br>ppm<br>2 | ME- MS61<br>Zr<br>ppm<br>0.5 |            |
|------------------------------------------------------|-----------------------------------|-----------------------------|-----------------------------|----------------------------|------------------------------|------------|
| ORIGINAL<br>DUP<br>Target Range - Lower<br>Upper     | Bound<br>Bound                    |                             |                             | " · · · · ·                |                              | DUPLICATES |
| ORIGINAL<br>DUP<br>Target Range - Lower<br>Upper     | Bound<br>Bound                    |                             |                             |                            |                              |            |
| ORIGINAL<br>DUP<br>Target Range - Lower<br>Upper I   | Bound<br>Bound                    |                             |                             |                            |                              |            |
| ORIGINAL<br>DUP<br>Target Range - Lower<br>Upper I   | Bound<br>Bound                    |                             |                             |                            |                              |            |
| ORIGINAL<br>DUP<br>Target Range - Lower<br>Upper i   | Bound<br>Bound                    |                             |                             |                            |                              |            |
| ORIGINAL<br>DUP<br>Target Range - Lower I<br>Upper I | Bound<br>Bound                    |                             |                             |                            | •                            |            |
| ORIGINAL<br>DUP<br>Target Range - Lower Upper f      | Bound<br>Bound                    | 0.5<br>0.5<br>0.4<br>0.6    | 4.1<br>4.0<br>3.7<br>4.4    | 3<br>3<br><2<br>4          | 31.8<br>32.3<br>29.1<br>35.0 |            |
|                                                      |                                   |                             |                             |                            |                              |            |

<sup>\*\*\*\*\*</sup> See Appendix Page for comments regarding this certificate \*\*\*\*\*



To: PERSHING RECOURCES 200 SOUTH VIRGINIA ST 8TH FLOOR RENO NV 89501 Page: Appendix 1 Total # Appendix Pages: 1 Finalized Date: 5- APR- 2018 Account: RECPER

Project: NEW ENTERPRISE

QC CERTIFICATE OF ANALYSIS RE18055575

|                    | CERTIFICATE COMMENTS                                                                        |
|--------------------|---------------------------------------------------------------------------------------------|
|                    | CERTIFICATE COMMENTS                                                                        |
|                    | ANALYTICAL COMMENTS                                                                         |
| Applies to Method: | REE's may not be totally soluble in this method.<br>ME- MS61                                |
|                    | LABORATORY ADDRESSES                                                                        |
| Applies to Method: | Processed at ALS Reno located at 4977 Energy Way, Reno, NV, USA. Au- ICP21 FND- 02 SND- ALS |
| Applies to Method. | Processed at ALS Vancouver located at 2103 Dollarton Hwy, North Vancouver, BC, Canada.      |
| Applies to Method: | ME- MS61                                                                                    |
|                    |                                                                                             |
|                    |                                                                                             |
|                    |                                                                                             |
|                    |                                                                                             |
|                    |                                                                                             |
|                    |                                                                                             |
|                    |                                                                                             |
|                    |                                                                                             |
|                    |                                                                                             |
|                    |                                                                                             |
|                    |                                                                                             |
|                    |                                                                                             |
|                    |                                                                                             |

# Appendix 3: 2017 Assay Certificates



www.bureauveritas.com/um

Client: Pershing Resources

200 South Virginia Street 8th Flr Reno Nevada 89501 USA

Submitted By: nicholas Barr
Receiving Lab: USA-Reno
Received: August 23, 2017

Report Date: September 22, 2017

Page: 1 of 2

# **CERTIFICATE OF ANALYSIS**

605 Boxington Way Suite 101 Sparks Nevada 89434 USA

## REN17000528.2

### **CLIENT JOB INFORMATION**

Inspectorate America Corporation

PHONE +1 775 359 6311

Project: Climax Shipment ID:

P.O. Number

Number of Samples: 21

### **SAMPLE DISPOSAL**

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

### SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

| Procedure<br>Code | Number of<br>Samples | Code Description                                    | Test<br>Wgt (g) | Report<br>Status | Lab |
|-------------------|----------------------|-----------------------------------------------------|-----------------|------------------|-----|
| PRP70-250         | 21                   | Crush, split and pulverize 250 g rock to 200 mesh   |                 |                  | REN |
| FA430             | 16                   | Au by 30g fire assay, AAS finish                    | 30              | Completed        | REN |
| EN002             | 21                   | Environmental disposal charge-Fire assay lead waste |                 |                  | REN |
| AQ300             | 21                   | 1:1:1 Aqua Regia digestion ICP-ES analysis          | 0.5             | Completed        | REN |
| FA330-Au          | 5                    | Fire assay fusion Au by ICP-ES                      | 30              | Completed        | REN |
| DRPLP             | 21                   | Warehouse handling / disposition of pulps           |                 |                  | REN |
| DRRJT             | 21                   | Warehouse handling / Disposition of reject          |                 |                  | REN |
| FA530             | 2                    | Au by 30g fire assay, Grav finish                   | 30              | Completed        | REN |
| FA530             | 1                    | Lead collection fire assay 30G fusion - Grav finish | 30              | Completed        | REN |

#### **ADDITIONAL COMMENTS**

Invoice To: Pershing Resources

200 South Virginia Street 8th Flr

Reno Nevada 89501

USA

CC: Steve Suaran

Joel Adams

Carolyn Bautista
Carolyn Bautista
Data Analysis Specialist

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project. For our complete terms and conditions please see our website at www.bureauveritas.com/um.



Client:

**Pershing Resources** 

200 South Virginia Street 8th Flr Reno Nevada 89501 USA

Project:

Climax

Report Date:

September 22, 2017

Inspectorate America Corporation

605 Boxington Way Suite 101 Sparks Nevada 89434 USA

PHONE +1 775 359 6311

Page:

2 of 2

Part: 1 of 2

# CERTIFICATE OF ANALYSIS

## REN17000528.2

|          | Method    | WGHT | FA430 | AQ300 | AQ300  | AQ300  | AQ300  | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 |
|----------|-----------|------|-------|-------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|          | Analyte   | Wgt  | Au    | Мо    | Cu     | Pb     | Zn     | Ag    | Ni    | Co    | Mn    | Fe    | As    | Th    | Sr    | Cd    | Sb    | Bi    | V     | Ca    | P     |
|          | Unit      | kg   | ppm   | ppm   | ppm    | ppm    | ppm    | ppm   | ppm   | ppm   | ppm   | %     | ppm   | %     | %     |
|          | MDL       | 0.01 | 0.005 | 1     | 1      | 3      | 1      | 0.3   | 1     | 1     | 2     | 0.01  | 2     | 2     | 1     | 0.5   | 3     | 3     | 1     | 0.01  | 0.001 |
|          | Rock Chip | 1.71 | >10   | 2     | 1218   | >10000 | >10000 | 82.2  | 9     | 19    | 816   | 13.41 | 1538  | <2    | 2     | 377.1 | 17    | <3    | 15    | 0.21  | 0.024 |
|          | Rock Chip | 1.76 | >10   | 4     | 1391   | >10000 | >10000 | >100  | 9     | 22    | 678   | 14.14 | 4301  | <2    | 3     | 310.9 | 24    | 26    | 10    | 0.56  | 0.017 |
| Jewell 1 | Rock Chip | 1.90 |       | 6     | 7036   | >10000 | 765    | >100  | 2     | 2     | 176   | 4.53  | 4129  | <2    | 18    | 5.7   | 319   | 89    | 2     | 0.04  | 0.019 |
| Jewell 2 | Rock Chip | 1.71 |       | 9     | 7331   | >10000 | 1052   | >100  | 3     | 6     | 451   | 4.63  | 4434  | <2    | 23    | 10.0  | 309   | 62    | 4     | 0.22  | 0.018 |
| Jewell 3 | Rock Chip | 2.17 |       | 7     | >10000 | >10000 | 972    | >100  | 3     | 2     | 222   | 4.40  | 5750  | <2    | 12    | 5.9   | 400   | 47    | 2     | 0.02  | 0.006 |
| Jewell 4 | Rock Chip | 1.94 |       | 5     | 4206   | >10000 | 362    | >100  | 2     | 2     | 130   | 3.32  | 1406  | <2    | 15    | 1.6   | 85    | 161   | 3     | 0.01  | 0.020 |
| Jewell 5 | Rock Chip | 2.27 |       | 18    | >10000 | >10000 | 3502   | >100  | 3     | 2     | 127   | 7.13  | 2784  | <2    | 7     | 19.3  | 97    | 235   | 5     | 0.02  | 0.043 |
|          | Rock Chip | 3.63 | 0.290 | 3     | 29     | 207    | 12     | 0.7   | 5     | 9     | 122   | 1.29  | 10    | <2    | 20    | <0.5  | <3    | <3    | 10    | 0.17  | 0.006 |
|          | Rock Chip | 5.90 | 0.233 | 3     | 16     | 90     | 12     | <0.3  | 5     | 9     | 169   | 1.33  | 6     | <2    | 17    | <0.5  | <3    | <3    | 9     | 0.30  | 0.009 |
|          | Rock Chip | 5.18 | 0.210 | 7     | 12     | 106    | 11     | 0.3   | 4     | 8     | 159   | 1.25  | 3     | <2    | 18    | <0.5  | <3    | <3    | 11    | 0.49  | 0.008 |
|          | Rock Chip | 2.69 | 0.606 | 4     | 15     | 93     | 6      | 1.1   | 3     | 3     | 102   | 0.99  | 4     | <2    | 13    | <0.5  | <3    | <3    | 5     | 0.31  | 0.004 |
|          | Rock Chip | 1.31 | 0.354 | 18    | 9      | 29     | 15     | <0.3  | 9     | 26    | 477   | 2.13  | 6     | <2    | 148   | <0.5  | <3    | <3    | 19    | 1.88  | 0.065 |
|          | Rock Chip | 4.91 | 7.288 | 35    | 765    | 875    | 9      | 1.7   | 6     | 8     | 164   | 2.74  | 7     | 3     | 108   | <0.5  | <3    | 77    | 126   | 1.04  | 0.013 |
|          | Rock Chip | 4.21 | 0.864 | 30    | 71     | 23     | 9      | <0.3  | 5     | 7     | 125   | 2.15  | 6     | 38    | 41    | <0.5  | <3    | 5     | 12    | 0.39  | 0.010 |
|          | Rock Chip | 5.02 | 0.526 | 5     | 25     | 99     | 1      | 0.3   | 2     | 4     | 86    | 1.10  | 3     | 8     | 26    | <0.5  | <3    | 12    | 6     | 0.46  | 0.003 |
|          | Rock Chip | 3.05 | 0.189 | 6     | 23     | 23     | 5      | <0.3  | 3     | 4     | 117   | 1.13  | 2     | 3     | 23    | <0.5  | <3    | <3    | 5     | 0.63  | 0.008 |
|          | Rock Chip | 4.73 | 0.125 | 5     | 8      | 30     | 2      | <0.3  | 4     | 4     | 94    | 1.32  | 4     | 8     | 69    | <0.5  | <3    | <3    | 9     | 1.52  | 0.008 |
|          | Rock Chip | 3.60 | 0.274 | 4     | 9      | 7      | 11     | <0.3  | 10    | 22    | 384   | 2.20  | 5     | 2     | 102   | <0.5  | <3    | <3    | 17    | 5.22  | 0.012 |
|          | Rock Chip | 2.80 | 0.009 | 6     | 21     | 10     | 30     | <0.3  | 30    | 13    | 573   | 2.77  | 5     | 4     | 257   | <0.5  | <3    | <3    | 42    | 3.47  | 0.044 |
|          | Rock Chip | 1.72 | 0.111 | 4     | 12     | 7      | 10     | <0.3  | 8     | 13    | 314   | 1.97  | 10    | 3     | 366   | <0.5  | <3    | <3    | 51    | 2.59  | 0.016 |
|          | Rock Chip | 4.01 | 0.012 | 5     | 38     | 8      | 28     | <0.3  | 15    | 13    | 756   | 3.05  | 16    | 2     | 179   | 0.6   | <3    | <3    | 56    | 5.80  | 0.035 |



**Pershing Resources** 

200 South Virginia Street 8th Flr Reno Nevada 89501 USA

Project: Climax

Report Date: September 22, 2017

2 of 2

Inspectorate America Corporation

605 Boxington Way Suite 101 Sparks Nevada 89434 USA

PHONE +1 775 359 6311

Page:

Part: 2 of 2

# CERTIFICATE OF ANALYSIS

### REN17000528.2

|          | Method    | AQ300 | AQ300 | AQ300 | AQ300 | AQ300  | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | FA330 | FA530 | FA530 |
|----------|-----------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|          | Analyte   | La    | Cr    | Mg    | Ва    | Ti     | В     | Al    | Na    | K     | W     | s     | Hg    | TI    | Ga    | Sc    | Au    | Au    | Au    |
|          | Unit      | ppm   | ppm   | %     | ppm   | %      | ppm   | %     | %     | %     | ppm   | %     | ppm   |
|          | MDL       | 1     | 1     | 0.01  | 1     | 0.001  | 20    | 0.01  | 0.01  | 0.01  | 2     | 0.05  | 1     | 5     | 5     | 5     | 0.002 | 0.9   | 0.9   |
|          | Rock Chip | 1     | 5     | 0.20  | 3     | 0.005  | <20   | 0.45  | <0.01 | 0.19  | <2    | >10   | <1    | <5    | <5    | <5    |       | 33.2  |       |
|          | Rock Chip | <1    | 5     | 0.08  | 2     | 0.009  | <20   | 0.25  | <0.01 | 0.14  | <2    | >10   | <1    | <5    | <5    | <5    |       | 26.8  |       |
| Jewell 1 | Rock Chip | 2     | 4     | 0.02  | 376   | 0.001  | <20   | 0.34  | 0.03  | 0.09  | <2    | 1.01  | 16    | <5    | <5    | <5    | 7.349 |       |       |
| Jewell 2 | Rock Chip | 2     | 5     | 0.03  | 448   | 0.001  | <20   | 0.72  | 0.04  | 0.14  | <2    | 0.93  | 16    | <5    | <5    | <5    | 8.014 |       |       |
| Jewell 3 | Rock Chip | 2     | 5     | <0.01 | 397   | <0.001 | <20   | 0.88  | 0.02  | 0.06  | <2    | 1.11  | 21    | <5    | 8     | <5    | >10   |       | 13.3  |
| Jewell 4 | Rock Chip | 7     | 6     | <0.01 | 463   | 0.001  | <20   | 0.33  | 0.02  | 0.10  | <2    | 0.82  | 13    | <5    | <5    | <5    | 2.520 |       |       |
| Jewell 5 | Rock Chip | 18    | 6     | <0.01 | 130   | <0.001 | <20   | 0.61  | 0.01  | 0.10  | <2    | 2.27  | 18    | <5    | <5    | <5    | 5.116 |       |       |
|          | Rock Chip | 3     | 6     | 0.01  | 51    | <0.001 | <20   | 0.09  | <0.01 | 0.04  | <2    | <0.05 | <1    | <5    | <5    | <5    |       |       |       |
|          | Rock Chip | 4     | 7     | 0.03  | 70    | <0.001 | <20   | 0.14  | 0.01  | 0.07  | <2    | <0.05 | <1    | <5    | <5    | <5    |       |       |       |
|          | Rock Chip | 3     | 5     | 0.03  | 42    | <0.001 | <20   | 0.12  | 0.01  | 0.06  | <2    | <0.05 | <1    | <5    | <5    | <5    |       |       |       |
|          | Rock Chip | 2     | 6     | 0.02  | 18    | <0.001 | <20   | 0.07  | 0.01  | 0.03  | <2    | <0.05 | <1    | <5    | <5    | <5    |       |       |       |
|          | Rock Chip | 6     | 8     | 0.04  | 93    | 0.001  | <20   | 0.13  | 0.01  | 0.06  | <2    | <0.05 | <1    | <5    | <5    | <5    |       |       |       |
|          | Rock Chip | 10    | 6     | 0.57  | 125   | 0.001  | <20   | 0.41  | 0.03  | 0.19  | 2     | <0.05 | <1    | <5    | <5    | <5    |       |       |       |
|          | Rock Chip | 64    | 5     | 0.07  | 49    | <0.001 | <20   | 0.20  | 0.03  | 0.10  | <2    | <0.05 | <1    | 21    | <5    | <5    |       |       |       |
|          | Rock Chip | 16    | 6     | 0.05  | 30    | <0.001 | <20   | 0.08  | 0.01  | 0.04  | <2    | <0.05 | <1    | <5    | <5    | <5    |       |       |       |
|          | Rock Chip | 6     | 5     | 0.10  | 66    | <0.001 | <20   | 0.17  | 0.02  | 0.10  | <2    | <0.05 | <1    | <5    | <5    | <5    |       |       |       |
|          | Rock Chip | 17    | 6     | 0.13  | 50    | 0.002  | <20   | 0.14  | 0.01  | 0.05  | <2    | <0.05 | <1    | <5    | <5    | <5    |       |       |       |
|          | Rock Chip | 4     | 7     | 0.20  | 159   | <0.001 | <20   | 0.31  | 0.09  | 0.12  | <2    | <0.05 | <1    | <5    | 6     | <5    |       |       |       |
|          | Rock Chip | 8     | 74    | 1.33  | 234   | 0.011  | <20   | 1.12  | 0.25  | 0.25  | <2    | 0.20  | <1    | <5    | 8     | <5    |       |       |       |
|          | Rock Chip | 6     | 8     | 1.34  | 152   | 0.001  | <20   | 0.62  | 0.02  | 0.19  | <2    | <0.05 | <1    | <5    | <5    | <5    |       |       |       |
|          | Rock Chip | 6     | 11    | 0.44  | 140   | <0.001 | <20   | 0.49  | 0.06  | 0.21  | <2    | <0.05 | <1    | <5    | <5    | <5    |       |       |       |



**Pershing Resources** 

200 South Virginia Street 8th Flr Reno Nevada 89501 USA

Project:

Climax

Report Date:

September 22, 2017

Inspectorate America Corporation

605 Boxington Way Suite 101 Sparks Nevada 89434 USA

PHONE +1 775 359 6311

Page: 1 of 2 Part: 1 of 2

| QUALITY CC             | NTROL     | REP  | OR     | Т     |        |        |        |       |       |       |       |        |       |       |       | RE    | N17   | 000   | 528.  | 2      |        |
|------------------------|-----------|------|--------|-------|--------|--------|--------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|--------|--------|
|                        | Method    | WGHT | FA430  | AQ300 | AQ300  | AQ300  | AQ300  | AQ300 | AQ300 | AQ300 | AQ300 | AQ300  | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300  | AQ300  |
|                        | Analyte   | Wgt  | Au     | Мо    | Cu     | Pb     | Zn     | Ag    | Ni    | Co    | Mn    | Fe     | As    | Th    | Sr    | Cd    | Sb    | Bi    | V     | Ca     | Р      |
|                        | Unit      | kg   | ppm    | ppm   | ppm    | ppm    | ppm    | ppm   | ppm   | ppm   | ppm   | %      | ppm   | %      | %      |
|                        | MDL       | 0.01 | 0.005  | 1     | 1      | 3      | 1      | 0.3   | 1     | 1     | 2     | 0.01   | 2     | 2     | 1     | 0.5   | 3     | 3     | 1     | 0.01   | 0.001  |
| Pulp Duplicates        |           |      |        |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |        |
|                        | Rock Chip | 1.76 | >10    | 4     | 1391   | >10000 | >10000 | >100  | 9     | 22    | 678   | 14.14  | 4301  | <2    | 3     | 310.9 | 24    | 26    | 10    | 0.56   | 0.017  |
|                        | QC        |      |        |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |        |
| Jewell 3               | Rock Chip | 2.17 |        | 7     | >10000 | >10000 | 972    | >100  | 3     | 2     | 222   | 4.40   | 5750  | <2    | 12    | 5.9   | 400   | 47    | 2     | 0.02   | 0.006  |
| REP Jewell 3           | QC        |      |        |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |        |
| Jewell 4               | Rock Chip | 1.94 |        | 5     | 4206   | >10000 | 362    | >100  | 2     | 2     | 130   | 3.32   | 1406  | <2    | 15    | 1.6   | 85    | 161   | 3     | 0.01   | 0.020  |
| REP Jewell 4           | QC        |      |        | 5     | 4032   | >10000 | 349    | >100  | 2     | 1     | 123   | 3.18   | 1392  | <2    | 15    | 1.6   | 100   | 164   | 3     | 0.01   | 0.019  |
|                        | Rock Chip | 1.31 | 0.354  | 18    | 9      | 29     | 15     | <0.3  | 9     | 26    | 477   | 2.13   | 6     | <2    | 148   | <0.5  | <3    | <3    | 19    | 1.88   | 0.065  |
|                        | QC        |      | 0.357  |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |        |
| Core Reject Duplicates |           |      |        |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |        |
| Jewell 2               | Rock Chip | 1.71 |        | 9     | 7331   | >10000 | 1052   | >100  | 3     | 6     | 451   | 4.63   | 4434  | <2    | 23    | 10.0  | 309   | 62    | 4     | 0.22   | 0.018  |
| DUP Jewell 2           | QC        |      |        | 9     | 6971   | >10000 | 1015   | >100  | 4     | 6     | 423   | 4.33   | 4477  | <2    | 22    | 9.4   | 315   | 59    | 3     | 0.22   | 0.018  |
| Reference Materials    |           |      |        |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |        |
| STD DS10               | Standard  |      |        | 12    | 160    | 195    | 384    | 1.6   | 78    | 13    | 879   | 2.72   | 48    | 8     | 62    | 2.4   | 7     | 11    | 43    | 1.08   | 0.076  |
| STD OREAS45EA          | Standard  |      |        | 5     | 756    | 19     | 30     | <0.3  | 448   | 61    | 400   | 24.03  | 11    | 8     | 3     | <0.5  | 5     | <3    | 315   | 0.04   | 0.031  |
| STD OXC145             | Standard  |      | 0.198  |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |        |
| STD OXC145             | Standard  |      |        |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |        |
| STD OXE101             | Standard  |      |        |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |        |
| STD OXI121             | Standard  |      | 1.816  |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |        |
| STD SP37               | Standard  |      |        |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |        |
| STD SP37               | Standard  |      |        |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |        |
| STD OXI121 Expected    |           |      | 1.834  |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |        |
| STD OXE101 Expected    |           |      |        |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |        |
| STD OXC145 Expected    |           |      | 0.212  |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |        |
| STD DS10 Expected      |           |      |        | 13.6  | 154.61 | 150.55 | 370    | 2.02  | 74.6  | 12.9  | 875   | 2.7188 | 46.2  | 7.5   | 67.1  | 2.62  | 9     | 11.65 | 43    | 1.0625 | 0.0765 |
| STD OREAS45EA Expected |           |      |        | 1.6   | 709    | 14.3   | 31.4   | 0.26  | 381   | 52    | 400   | 23.51  | 10    | 10.7  | 3.5   |       |       |       | 303   | 0.036  | 0.029  |
| STD SP37 Expected      |           |      |        |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |        |
| BLK                    | Blank     |      | <0.005 |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |        |
| BLK                    | Blank     |      |        |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |        |



Client: Pershing Resources

200 South Virginia Street 8th Flr Reno Nevada 89501 USA

www.bureauveritas.com/um

Project: Climax

0 - - 1 - -

September 22, 2017

Inspectorate America Corporation 605 Boxington Way Suite 101 Sparks Nevada 89434 USA PHONE +1 775 359 6311

Page: 1 of 2

Report Date:

Part: 2 of 2

# QUALITY CONTROL REPORT

# REN17000528.2

|                        | Method    | AQ300 | AQ300 | AQ300 | AQ300 | AQ300  | AQ300 | AQ300  | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | FA330 | FA530 | FA530 |
|------------------------|-----------|-------|-------|-------|-------|--------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                        | Analyte   | La    | Cr    | Mg    | Ва    | Ti     | В     | Al     | Na    | K     | W     | s     | Hg    | TI    | Ga    | Sc    | Au    | Au    | Au    |
|                        | Unit      | ppm   | ppm   | %     | ppm   | %      | ppm   | %      | %     | %     | ppm   | %     | ppm   |
|                        | MDL       | 1     | 1     | 0.01  | 1     | 0.001  | 20    | 0.01   | 0.01  | 0.01  | 2     | 0.05  | 1     | 5     | 5     | 5     | 0.002 | 0.9   | 0.9   |
| Pulp Duplicates        |           |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       |       |       |       |
|                        | Rock Chip | <1    | 5     | 0.08  | 2     | 0.009  | <20   | 0.25   | <0.01 | 0.14  | <2    | >10   | <1    | <5    | <5    | <5    |       | 26.8  |       |
| REP                    | QC        |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       |       | 30.0  |       |
|                        | Rock Chip | 2     | 5     | <0.01 | 397   | <0.001 | <20   | 0.88   | 0.02  | 0.06  | <2    | 1.11  | 21    | <5    | 8     | <5    | >10   |       | 13.3  |
| REP Jewell 3           | QC        |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       |       |       | 14.0  |
|                        | Rock Chip | 7     | 6     | <0.01 | 463   | 0.001  | <20   | 0.33   | 0.02  | 0.10  | <2    | 0.82  | 13    | <5    | <5    | <5    | 2.520 |       |       |
| REP Jewell 4           | QC        | 7     | 6     | <0.01 | 493   | 0.001  | <20   | 0.31   | 0.02  | 0.09  | <2    | 0.77  | 13    | <5    | <5    | <5    |       |       |       |
|                        | Rock Chip | 6     | 8     | 0.04  | 93    | 0.001  | <20   | 0.13   | 0.01  | 0.06  | <2    | <0.05 | <1    | <5    | <5    | <5    |       |       |       |
|                        | QC        |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       |       |       |       |
| Core Reject Duplicates |           |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       |       |       |       |
| Jewell 2               | Rock Chip | 2     | 5     | 0.03  | 448   | 0.001  | <20   | 0.72   | 0.04  | 0.14  | <2    | 0.93  | 16    | <5    | <5    | <5    | 8.014 |       |       |
| DUP Jewell 2           | QC        | 2     | 4     | 0.03  | 409   | 0.001  | <20   | 0.68   | 0.03  | 0.12  | <2    | 0.92  | 15    | <5    | <5    | <5    | 8.554 |       |       |
| Reference Materials    |           |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       |       |       |       |
| STD DS10               | Standard  | 17    | 55    | 0.79  | 432   | 0.075  | <20   | 1.02   | 0.07  | 0.33  | 4     | 0.29  | <1    | 8     | <5    | <5    |       |       |       |
| STD OREAS45EA          | Standard  | 7     | 959   | 0.11  | 157   | 0.104  | <20   | 3.43   | 0.02  | 0.06  | <2    | <0.05 | <1    | <5    | <5    | 72    |       |       |       |
| STD OXC145             | Standard  |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       |       |       |       |
| STD OXC145             | Standard  |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       | 0.224 |       |       |
| STD OXE101             | Standard  |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       | 0.629 |       |       |
| STD OXI121             | Standard  |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       |       |       |       |
| STD SP37               | Standard  |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       |       | 18.2  |       |
| STD SP37               | Standard  |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       |       |       | 18.2  |
| STD OXI121 Expected    |           |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       |       |       |       |
| STD OXE101 Expected    |           |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       | 0.607 |       |       |
| STD OXC145 Expected    |           |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       | 0.212 |       |       |
| STD DS10 Expected      |           | 17.5  | 54.6  | 0.775 | 412   | 0.0817 | 7.13  | 1.0259 | 0.067 | 0.338 | 3.32  | 0.29  | 0.3   | 5.1   | 4.3   | 2.8   |       |       |       |
| STD OREAS45EA Expected |           | 7.06  | 849   | 0.095 | 148   | 0.0984 |       | 3.13   | 0.02  | 0.053 |       | 0.036 |       |       | 12.4  | 78    |       |       |       |
| STD SP37 Expected      |           |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       |       | 18.14 | 18.14 |
| BLK                    | Blank     |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       |       |       |       |
| BLK                    | Blank     |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       |       | <0.9  |       |



Pershing Resources 200 South Virginia Street 8th Flr

200 South Virginia Street 8th Reno Nevada 89501 USA

Project:

Climax

Report Date:

September 22, 2017

Inspectorate America Corporation 605 Boxington Way Suite 101 Sparks Nevada 89434 USA PHONE +1 775 359 6311

Page:

2 of 2

Part: 1 of 2

| QUALITY   | CONTROL    | REP  | OR     | Т     |       |       |       |       |       |       |       |       |       |       |       | RE    | N17   | 000   | 528.  | .2    |        |
|-----------|------------|------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
|           |            | WGHT | FA430  | AQ300  |
|           |            | Wgt  | Au     | Мо    | Cu    | Pb    | Zn    | Ag    | Ni    | Co    | Mn    | Fe    | As    | Th    | Sr    | Cd    | Sb    | Bi    | V     | Ca    | Р      |
|           |            | kg   | ppm    | ppm   | ppm   | ppm   | ppm   | ppm   | ppm   | ppm   | ppm   | %     | ppm   | %     | %      |
|           |            | 0.01 | 0.005  | 1     | 1     | 3     | 1     | 0.3   | 1     | 1     | 2     | 0.01  | 2     | 2     | 1     | 0.5   | 3     | 3     | 1     | 0.01  | 0.001  |
| BLK       | Blank      |      |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |
| BLK       | Blank      |      |        | <1    | <1    | <3    | <1    | <0.3  | <1    | <1    | <2    | <0.01 | <2    | <2    | <1    | <0.5  | <3    | <3    | <1    | <0.01 | <0.001 |
| BLK       | Blank      |      |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |
| Prep Wash |            |      |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |
| ROCK-R3   | Prep Blank |      | <0.005 | <1    | 4     | 3     | 4     | <0.3  | 2     | <1    | 69    | 0.74  | 2     | <2    | 2     | <0.5  | <3    | <3    | 4     | 0.05  | 0.001  |



**Pershing Resources** 

200 South Virginia Street 8th Flr Reno Nevada 89501 USA

Project:

Climax

Report Date:

September 22, 2017

Inspectorate America Corporation 605 Boxington Way Suite 101 Sparks Nevada 89434 USA PHONE +1 775 359 6311

Page:

2 of 2

Part: 2 of 2

### QUALITY CONTROL REPORT

### REN17000528.2

|           |            | AQ300<br>La | AQ300<br>Cr | AQ300<br>Mg | AQ300<br>Ba | AQ300<br>Ti | AQ300<br>B | AQ300<br>AI | AQ300<br>Na | AQ300<br>K | AQ300<br>W | AQ300<br>S | AQ300<br>Hg | AQ300<br>TI | AQ300<br>Ga | AQ300<br>Sc | FA330<br>Au | FA530<br>Au | FA530<br>Au |
|-----------|------------|-------------|-------------|-------------|-------------|-------------|------------|-------------|-------------|------------|------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|           |            | ppm         | ppm         | %           | ppm         | %           | ppm        | %           | %           | %          | ppm        | %          | ppm         |
|           |            | 1           | 1           | 0.01        | 1           | 0.001       | 20         | 0.01        | 0.01        | 0.01       | 2          | 0.05       | 1           | 5           | 5           | 5           | 0.002       | 0.9         | 0.9         |
| BLK       | Blank      |             |             |             |             |             |            |             |             |            |            |            |             |             |             |             | 0.002       |             |             |
| BLK       | Blank      | <1          | <1          | <0.01       | <1          | <0.001      | <20        | <0.01       | <0.01       | <0.01      | <2         | <0.05      | <1          | <5          | <5          | <5          |             |             |             |
| BLK       | Blank      |             |             |             |             |             |            |             |             |            |            |            |             |             |             |             |             |             | <0.9        |
| Prep Wash |            |             |             |             |             |             |            |             |             |            |            |            |             |             |             |             |             |             |             |
| ROCK-R3   | Prep Blank | <1          | 5           | 0.01        | 9           | 0.002       | <20        | 0.12        | <0.01       | 0.02       | <2         | <0.05      | <1          | <5          | <5          | <5          |             |             |             |

## Appendix 4: 2016 Sample Locations and Descriptions

### Pershing Resources – New Enterprise Mine Project, Mohave Co., AZ

### NAD 83 sample location for EN 001 through EN 031

| -FN 001                      | 12 S 0242849 E              | Spring site workings                                                    |                       |
|------------------------------|-----------------------------|-------------------------------------------------------------------------|-----------------------|
| -LIV 001                     | 3892060 N                   | Spring site workings                                                    |                       |
| -EN 002<br>003<br>004        | 12 S 0242752 E<br>3892707 N | Enterprise shaft collar dump                                            |                       |
| -EN 005                      | 12 S 0242773 E<br>3892275 N | Short adit, side vein, west of ma                                       | in Jewell adit        |
| -EN 006<br>007<br>008<br>009 | 12 S 0242792 E<br>3892280 N | Jewell adit portal, S to N sample                                       | sequence in adit      |
| -EN 010                      | 12 S 0242782 E<br>3893042 N | S to N sample sequence, ridge to                                        | op gossan qtz vein    |
| -EN 011                      | 12 S 0242779 E<br>3893104 N | دد                                                                      | "                     |
| -EN 012                      | 12 S 0242777 E<br>3893151 N |                                                                         | "                     |
| -EN 013                      | 12 S 0241148 E<br>3893165 N | Select dump, cr aggregate of gal<br>chalcopyrite, pyrite, qtz, stg goss |                       |
| -EN 014                      | (same site)                 |                                                                         |                       |
| -EN 015                      | (same site)                 |                                                                         |                       |
| -EN 016                      | 12 S 0242100 E<br>3893057 N | Adit/shaft high on ridge, gossan                                        | qtz + CuOx, PbCO3     |
| -EN 017                      | 12 S 0242319 E<br>3893164 N | Trench cut/stockpile, qtz + galer                                       | na-CuOx-AgOx-gossan   |
| -EN 018                      | 12 S 0242383 E<br>3893129 N | Select adit dump, gossan qtz, stg                                       | g galena, lessor CuOx |

### Pershing Resources – New Enterprise Mine Project, Mohave Co., AZ

NAD 83 sample location for EN 001 through EN 031 (cont.)

- -EN 023 12 S 0243450 E Standard Mine area, (wash immed. to north)
  - 3888987 N qtz + gossan + K alt/sericite, small dig
- -EN 024 12 S 0243702 E same wash, (similar) qtz + gossan 3888980 N adit portal/dump
- -EN 025 12 S 0243717 E same wash, small workings, concrete tank site 3888990 N qtz + gossan
- -EN 026 12 S 0244067 E Shaft dump, new water tank, qtz + gossan + 3889258 N MoS2 + pyrite + minor chalcopyrite/OxCu
- -EN 028 12 S 0243910 E Caved adit dump, qtz + sericite + K alt + blk oxides 3888813 N
- -EN 029 12 S 0243832 E Vein at adit portal, qtz + gossan + CuOx/AgCl (?) 3888739 N
- -EN 030 12 S 0243898 E Concrete millsite, upper ore chute stockpile, 3888711 N grey vn qtz + pyrite + stg MoS2
- -EN 031 12 S 0243885 E Near millsite, lower adit portal/winze stockpile 3888725 N qtz + stg gossan + OxCu + AgCl (?) + blk oxides

## Appendix 5: 2016 Assay Certificates



Client: Pershing Resources
200 South Virginia Street 8th Flr

Reno NV 89501 USA

Submitted By: Steve Plumb
Receiving Lab: USA-Reno
Received: June 08, 2016

Report Date: June 30, 2016

Page: 1 of 2

### **CERTIFICATE OF ANALYSIS**

605 Boxington Way Suite 101 Sparks NV 89434 USA

## REN16000306.1

#### **CLIENT JOB INFORMATION**

Inspectorate America Corporation

PHONE +1 775 359 6311

Project: New Enterprise
Shipment ID: EN-001 to EN-012

P.O. Number

Number of Samples: 12

### **SAMPLE DISPOSAL**

RTRN-PLP Return After 90 days

DISP-RJT Dispose of Reject After 90 days

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

### SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

| Procedure<br>Code | Number of<br>Samples | Code Description                                  | Test<br>Wgt (g) | Report<br>Status | Lab |
|-------------------|----------------------|---------------------------------------------------|-----------------|------------------|-----|
| PRP70-250         | 12                   | Crush, split and pulverize 250 g rock to 200 mesh |                 |                  | REN |
| FA430             | 12                   | Au by 30g fire assay, AAS finish                  | 30              | Completed        | REN |
| AQ300             | 12                   | 1:1:1 Aqua Regia digestion ICP-ES analysis        | 0.5             | Completed        | REN |
| DRPLP             | 12                   | Warehouse handling / disposition of pulps         |                 |                  | REN |
| DRRJT             | 12                   | Warehouse handling / Disposition of reject        |                 |                  | REN |
| AQ410             | 9                    | Ore grade analysis by Aqua Regia and AAS          | 0.1             | Completed        | REN |
| FA530-Ag          | 8                    | Ag by 30g fire assay, Grav finish                 | 30              | Completed        | REN |

#### **ADDITIONAL COMMENTS**

Invoice To: Pershing Resources

200 South Virginia Street 8th Flr

Reno NV 89501

USA

CC: David Jordan

Joel Adams

Lonnie Vance
Laboratory Production Manager

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project. For our complete terms and conditions please see our website at www.bureauveritas.com/um.



Client:

**Pershing Resources** 

200 South Virginia Street 8th Flr

Reno NV 89501 USA

Project:

New Enterprise

Report Date:

June 30, 2016

Inspectorate America Corporation 605 Boxington Way Suite 101 Sparks NV 89434 USA PHONE +1 775 359 6311

Page:

2 of 2

Part: 1 of 2

|  | CER | RTIFICA | TE OF | ANAL' | YSIS |
|--|-----|---------|-------|-------|------|
|--|-----|---------|-------|-------|------|

## REN16000306.1

| Metho            | WGHT   | FA430 | AQ300 | AQ300  | AQ300  | AQ300  | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 |
|------------------|--------|-------|-------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Analyt           | e Wgt  | Au    | Мо    | Cu     | Pb     | Zn     | Ag    | Ni    | Co    | Mn    | Fe    | As    | Th    | Sr    | Cd    | Sb    | Bi    | V     | Ca    | P     |
| Un               | it kg  | ppm   | ppm   | ppm    | ppm    | ppm    | ppm   | ppm   | ppm   | ppm   | %     | ppm   | %     | %     |
| MD               | L 0.01 | 0.005 | 1     | 1      | 3      | 1      | 0.3   | 1     | 1     | 2     | 0.01  | 2     | 2     | 1     | 0.5   | 3     | 3     | 1     | 0.01  | 0.001 |
| EN-001 Rock Chip | 2.33   | 3.119 | 2     | 7885   | >10000 | >10000 | >100  | 3     | 4     | 89    | 5.05  | 26    | <2    | 49    | 126.9 | <3    | 251   | 6     | 0.09  | 0.017 |
| EN-002 Rock Chip | 2.12   | 0.500 | 4     | 3380   | 5228   | 7675   | 90.0  | 4     | 7     | 89    | 5.75  | 369   | <2    | 12    | 46.0  | 43    | 63    | <1    | 0.03  | 0.003 |
| EN-003 Rock Chip | 2.52   | 0.782 | 2     | >10000 | >10000 | 2578   | >100  | 2     | 1     | 36    | 6.08  | 234   | 16    | 13    | 33.7  | 165   | 378   | 1     | 0.01  | 0.002 |
| EN-004 Rock Chip | 2.36   | 0.256 | 10    | 307    | 6931   | 418    | 34.3  | 3     | 4     | 93    | 6.50  | 185   | <2    | 5     | 2.4   | 4     | 24    | 2     | 0.03  | 0.004 |
| EN-005 Rock Chip | 2.34   | 1.069 | 7     | 8551   | >10000 | >10000 | 92.5  | 6     | 9     | 78    | 4.56  | 2548  | <2    | 5     | 855.0 | 245   | 57    | 2     | 0.06  | 0.016 |
| EN-006 Rock Chip | 2.22   | 0.433 | 2     | 1489   | 1992   | 556    | >100  | 2     | 11    | 623   | 1.40  | 164   | <2    | 5     | 2.6   | 8     | 8     | 1     | 0.02  | 0.003 |
| EN-007 Rock Chip | 2.10   | 0.458 | 8     | >10000 | 7997   | >10000 | 99.7  | 8     | 8     | 177   | 10.34 | 2457  | <2    | 13    | 154.8 | 111   | 72    | 14    | 0.01  | 0.023 |
| EN-008 Rock Chip | 1.99   | 0.314 | 24    | 2672   | 1330   | >10000 | 32.1  | 11    | 16    | 480   | 5.70  | 300   | <2    | 4     | 165.4 | 10    | 58    | 4     | 0.04  | 0.021 |
| EN-009 Rock Chip | 2.02   | 0.791 | <1    | 5356   | >10000 | >10000 | 65.9  | 7     | 11    | 97    | 3.89  | 1707  | <2    | 14    | 196.8 | 152   | 61    | <1    | 0.02  | 0.004 |
| EN-010 Rock Chip | 2.66   | 0.217 | 25    | 2533   | 4093   | 2407   | >100  | 3     | 3     | 119   | 22.48 | 35    | <2    | 14    | 4.4   | 13    | 1426  | 10    | 0.03  | 0.049 |
| EN-011 Rock Chip | 2.30   | 0.446 | 44    | 7970   | >10000 | 575    | 71.1  | 1     | <1    | 74    | 4.62  | 1048  | <2    | 3     | 1.9   | 85    | 258   | 12    | <0.01 | 0.011 |
| EN-012 Rock Chip | 2.15   | 0.748 | 4     | >10000 | >10000 | 713    | >100  | 2     | 1     | 92    | 4.79  | 363   | <2    | 5     | 2.0   | 13    | 34    | 2     | 0.01  | 0.007 |



**Pershing Resources** 

200 South Virginia Street 8th Flr

Reno NV 89501 USA

www.bureauveritas.com/um

Project:

New Enterprise

Report Date:

June 30, 2016

Inspectorate America Corporation 605 Boxington Way Suite 101 Sparks NV 89434 USA PHONE +1 775 359 6311

Page:

2 of 2

Part: 2 of 2

# CERTIFICATE OF ANALYSIS

# REN16000306.1

|        | Method    | AQ300 | AQ300 | AQ300 | AQ300 | AQ300  | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ410 | AQ410 | AQ410 | FA530 |
|--------|-----------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|        | Analyte   | La    | Cr    | Mg    | Ва    | Ti     | В     | Al    | Na    | K     | W     | s     | Hg    | TI    | Ga    | Sc    | Cu    | Pb    | Zn    | Ag    |
|        | Unit      | ppm   | ppm   | %     | ppm   | %      | ppm   | %     | %     | %     | ppm   | %     | ppm   | ppm   | ppm   | ppm   | %     | %     | %     | ppm   |
|        | MDL       | 1     | 1     | 0.01  | 1     | 0.001  | 20    | 0.01  | 0.01  | 0.01  | 2     | 0.05  | 1     | 5     | 5     | 5     | 0.01  | 0.01  | 0.01  | 20    |
| EN-001 | Rock Chip | 3     | 3     | 0.04  | 152   | 0.003  | <20   | 0.29  | <0.01 | 0.25  | >100  | 4.01  | 10    | <5    | <5    | <5    |       | 1.05  | 2.32  | 223.9 |
| EN-002 | Rock Chip | 3     | 5     | <0.01 | 77    | <0.001 | <20   | 0.05  | <0.01 | 0.04  | 51    | 6.85  | 5     | <5    | <5    | <5    |       |       |       |       |
| EN-003 | Rock Chip | 105   | <1    | <0.01 | 68    | <0.001 | <20   | 0.50  | <0.01 | 0.02  | 15    | 4.18  | 14    | <5    | <5    | <5    | 1.35  | >20   |       | 404.0 |
| EN-004 | Rock Chip | 3     | 3     | <0.01 | 38    | <0.001 | <20   | 0.07  | <0.01 | 0.06  | <2    | 6.58  | <1    | <5    | <5    | <5    |       |       |       |       |
| EN-005 | Rock Chip | <1    | 5     | 0.02  | 35    | <0.001 | <20   | 0.26  | <0.01 | 0.12  | <2    | 9.28  | 26    | <5    | <5    | <5    |       | 8.00  | 10.95 |       |
| EN-006 | Rock Chip | 3     | 4     | 0.01  | 89    | 0.001  | <20   | 0.12  | <0.01 | 0.03  | 3     | 0.49  | 39    | <5    | <5    | <5    |       |       |       | 248.9 |
| EN-007 | Rock Chip | <1    | 3     | 0.05  | 84    | <0.001 | <20   | 1.09  | 0.08  | 0.21  | <2    | 4.57  | 10    | <5    | <5    | <5    | 1.97  |       | 1.23  |       |
| EN-008 | Rock Chip | 1     | 3     | 0.03  | 17    | 0.001  | <20   | 0.38  | <0.01 | 0.17  | 98    | 5.85  | 3     | <5    | <5    | <5    |       |       | 1.65  |       |
| EN-009 | Rock Chip | <1    | 6     | <0.01 | 88    | <0.001 | <20   | 0.04  | <0.01 | 0.03  | >100  | 5.57  | 7     | <5    | <5    | <5    |       | 3.82  | 2.80  |       |
| EN-010 | Rock Chip | <1    | <1    | 0.02  | 59    | 0.004  | <20   | 0.30  | 0.04  | 0.18  | 15    | 0.58  | 4     | <5    | <5    | <5    |       |       |       | 309.2 |
| EN-011 | Rock Chip | 3     | 4     | <0.01 | 97    | 0.001  | <20   | 0.29  | <0.01 | 0.09  | 3     | 0.73  | 4     | <5    | <5    | <5    |       | 3.55  |       |       |
| EN-012 | Rock Chip | 9     | 6     | <0.01 | 168   | <0.001 | <20   | 0.43  | 0.01  | 0.04  | 6     | 1.18  | 5     | <5    | <5    | <5    | 1.31  | 11.03 |       | 136.4 |



Client: P

Pershing Resources 200 South Virginia Street 8th Flr

Reno NV 89501 USA

Project:

New Enterprise

Report Date:

June 30, 2016

Inspectorate America Corporation 605 Boxington Way Suite 101 Sparks NV 89434 USA PHONE +1 775 359 6311

Page: 1 of 2

Part: 1 of 2

| QUALITY CO             | NTROL     | REP  | 'OR'  | Т     |        |        |        |       |       |       |       |        |       |       |       | RE    | N16   | 000   | 306.  | .1     |       |
|------------------------|-----------|------|-------|-------|--------|--------|--------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|--------|-------|
|                        | Method    | WGHT | FA430 | AQ300 | AQ300  | AQ300  | AQ300  | AQ300 | AQ300 | AQ300 | AQ300 | AQ300  | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300  | AQ30  |
|                        | Analyte   | Wgt  | Au    | Мо    | Cu     | Pb     | Zn     | Ag    | Ni    | Co    | Mn    | Fe     | As    | Th    | Sr    | Cd    | Sb    | Bi    | V     | Ca     | F     |
|                        | Unit      | kg   | ppm   | ppm   | ppm    | ppm    | ppm    | ppm   | ppm   | ppm   | ppm   | %      | ppm   | %      | %     |
|                        | MDL       | 0.01 | 0.005 | 1     | 1      | 3      | 1      | 0.3   | 1     | 1     | 2     | 0.01   | 2     | 2     | 1     | 0.5   | 3     | 3     | 1     | 0.01   | 0.001 |
| Pulp Duplicates        |           |      |       |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |       |
| EN-001                 | Rock Chip | 2.33 | 3.119 | 2     | 7885   | >10000 | >10000 | >100  | 3     | 4     | 89    | 5.05   | 26    | <2    | 49    | 126.9 | <3    | 251   | 6     | 0.09   | 0.017 |
| REP EN-001             | QC        |      | 2.799 |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |       |
| EN-002                 | Rock Chip | 2.12 | 0.500 | 4     | 3380   | 5228   | 7675   | 90.0  | 4     | 7     | 89    | 5.75   | 369   | <2    | 12    | 46.0  | 43    | 63    | <1    | 0.03   | 0.003 |
| REP EN-002             | QC        |      | 0.489 |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |       |
| EN-007                 | Rock Chip | 2.10 | 0.458 | 8     | >10000 | 7997   | >10000 | 99.7  | 8     | 8     | 177   | 10.34  | 2457  | <2    | 13    | 154.8 | 111   | 72    | 14    | 0.01   | 0.023 |
| REP EN-007             | QC        |      |       | 8     | >10000 | 8221   | >10000 | 97.4  | 9     | 9     | 187   | 10.98  | 2528  | <2    | 15    | 160.5 | 121   | 77    | 14    | 0.02   | 0.028 |
| EN-012                 | Rock Chip | 2.15 | 0.748 | 4     | >10000 | >10000 | 713    | >100  | 2     | 1     | 92    | 4.79   | 363   | <2    | 5     | 2.0   | 13    | 34    | 2     | 0.01   | 0.007 |
| REP EN-012             | QC        |      |       |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |       |
| Core Reject Duplicates |           |      |       |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |       |
| EN-006                 | Rock Chip | 2.22 | 0.433 | 2     | 1489   | 1992   | 556    | >100  | 2     | 11    | 623   | 1.40   | 164   | <2    | 5     | 2.6   | 8     | 8     | 1     | 0.02   | 0.003 |
| DUP EN-006             | QC        |      | 0.443 | 2     | 1560   | 2045   | 699    | >100  | 3     | 11    | 630   | 1.58   | 162   | <2    | 5     | 3.5   | 4     | 8     | 1     | 0.02   | 0.004 |
| Reference Materials    |           |      |       |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |       |
| STD CDN FCM6           | Standard  |      |       |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |       |
| STD DS10               | Standard  |      |       | 14    | 159    | 157    | 396    | 1.5   | 79    | 13    | 903   | 2.90   | 46    | 11    | 68    | 2.5   | 6     | 21    | 45    | 1.14   | 0.081 |
| STD DS10               | Standard  |      |       | 16    | 157    | 166    | 373    | 1.8   | 76    | 13    | 897   | 2.93   | 44    | 10    | 65    | 2.3   | 8     | 8     | 46    | 1.12   | 0.077 |
| STD OREAS45EA          | Standard  |      |       | <1    | 867    | 26     | 32     | 1.8   | 497   | 69    | 464   | 27.85  | 15    | 2     | 3     | <0.5  | 10    | 11    | 361   | 0.04   | 0.042 |
| STD OREAS45EA          | Standard  |      |       | 7     | 806    | 41     | 60     | 1.6   | 439   | 60    | 415   | 23.96  | 18    | 11    | 5     | <0.5  | 29    | <3    | 334   | 0.03   | 0.028 |
| STD OXC129             | Standard  |      | 0.200 |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |       |
| STD OXC129             | Standard  |      | 0.207 |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |       |
| STD OXI121             | Standard  |      | 1.808 |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |       |
| STD OXI121             | Standard  |      | 1.880 |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |       |
| STD SP72               | Standard  |      |       |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |       |
| STD SP72               | Standard  |      |       |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |       |
| STD OXC129 Expected    |           |      | 0.205 |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |       |
| STD OXI121 Expected    |           |      | 1.834 |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |       |
| STD CDN FCM6 Expected  |           |      |       |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |       |
| STD SP72 Expected      |           |      |       |       |        |        |        |       |       |       |       |        |       |       |       |       |       |       |       |        |       |
| STD DS10 Expected      |           |      |       | 13.6  | 154.61 | 150.55 | 370    | 2.02  | 74.6  | 12.9  | 875   | 2.7188 | 46.2  | 7.5   | 67.1  | 2.62  | 9     | 11.65 | 43    | 1.0625 | 0.076 |



Pershing Resources 200 South Virginia Street 8th Flr

Reno NV 89501 USA

Project:

New Enterprise

Report

Report Date:

June 30, 2016

Inspectorate America Corporation 605 Boxington Way Suite 101 Sparks NV 89434 USA PHONE +1 775 359 6311

Page: 1 of 2

Part: 2 of 2

| QUALITY CC                                | NTROL             | REP         | OR          | Т           |             |             |            |             |             |            |            |            |             |             |             | RE          | N16         | 000         | 306         | .1          |
|-------------------------------------------|-------------------|-------------|-------------|-------------|-------------|-------------|------------|-------------|-------------|------------|------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                                           | Method<br>Analyte | AQ300<br>La | AQ300<br>Cr | AQ300<br>Mg | AQ300<br>Ba | AQ300<br>Ti | AQ300<br>B | AQ300<br>Al | AQ300<br>Na | AQ300<br>K | AQ300<br>W | AQ300<br>S | AQ300<br>Hg | AQ300<br>TI | AQ300<br>Ga | AQ300<br>Sc | AQ410<br>Cu | AQ410<br>Pb | AQ410<br>Zn | FA530<br>Ag |
|                                           | Unit<br>MDL       | ppm<br>1    | ppm<br>1    | %<br>0.01   | ppm<br>1    | %<br>0.001  | ppm<br>20  | %<br>0.01   | %<br>0.01   | %<br>0.01  | ppm<br>2   | %<br>0.05  | ppm<br>1    | ppm<br>5    | ppm<br>5    | ppm<br>5    | %<br>0.01   | %<br>0.01   | %<br>0.01   | ppm<br>20   |
| Pulp Duplicates                           |                   |             |             |             |             |             |            |             |             |            |            |            |             |             |             |             |             |             |             |             |
| EN-001                                    | Rock Chip         | 3           | 3           | 0.04        | 152         | 0.003       | <20        | 0.29        | <0.01       | 0.25       | >100       | 4.01       | 10          | <5          | <5          | <5          |             | 1.05        | 2.32        | 223.9       |
| REP EN-001                                | QC                |             |             |             |             |             |            |             |             |            |            |            |             |             |             |             |             |             |             |             |
| EN-002                                    | Rock Chip         | 3           | 5           | <0.01       | 77          | <0.001      | <20        | 0.05        | <0.01       | 0.04       | 51         | 6.85       | 5           | <5          | <5          | <5          |             |             |             |             |
| REP EN-002                                | QC                |             |             |             |             |             |            |             |             |            |            |            |             |             |             |             |             |             |             |             |
| EN-007                                    | Rock Chip         | <1          | 3           | 0.05        | 84          | <0.001      | <20        | 1.09        | 0.08        | 0.21       | <2         | 4.57       | 10          | <5          | <5          | <5          | 1.97        |             | 1.23        |             |
| REP EN-007                                | QC                | 2           | 3           | 0.05        | 91          | 0.001       | <20        | 1.13        | 0.08        | 0.22       | 79         | 4.98       | 11          | <5          | <5          | <5          |             |             |             | 91.8        |
| EN-012                                    | Rock Chip         | 9           | 6           | <0.01       | 168         | <0.001      | <20        | 0.43        | 0.01        | 0.04       | 6          | 1.18       | 5           | <5          | <5          | <5          | 1.31        | 11.03       |             | 136.4       |
| REP EN-012                                | QC                |             |             |             |             |             |            |             |             |            |            |            |             |             |             |             | 1.30        | 11.42       | 0.07        | 143.8       |
| Core Reject Duplicates                    |                   |             |             |             |             |             |            |             |             |            |            |            |             |             |             |             |             |             |             |             |
| EN-006                                    | Rock Chip         | 3           | 4           | 0.01        | 89          | 0.001       | <20        | 0.12        | <0.01       | 0.03       | 3          | 0.49       | 39          | <5          | <5          | <5          |             |             |             | 248.9       |
| DUP EN-006                                | QC                | 2           | 7           | 0.02        | 91          | 0.001       | <20        | 0.12        | <0.01       | 0.03       | 4          | 0.53       | 38          | <5          | <5          | <5          |             |             |             | 246.9       |
| Reference Materials                       |                   |             |             |             |             |             |            |             |             |            |            |            |             |             |             |             |             |             |             |             |
| STD CDN FCM6                              | Standard          |             |             |             |             |             |            |             |             |            |            |            |             |             |             |             | 1.19        | 1.45        | 9.08        |             |
| STD DS10                                  | Standard          | 17          | 56          | 0.81        | 449         | 0.076       | <20        | 1.08        | 0.07        | 0.35       | 4          | 0.32       | <1          | 9           | <5          | <5          |             |             |             |             |
| STD DS10                                  | Standard          | 16          | 58          | 0.80        | 436         | 0.080       | 26         | 1.09        | 0.08        | 0.35       | 4          | 0.30       | 1           | 5           | <5          | <5          |             |             |             |             |
| STD OREAS45EA                             | Standard          | 7           | 1096        | 0.11        | 182         | 0.110       | <20        | 3.67        | 0.03        | 0.07       | <2         | 0.05       | <1          | <5          | <5          | 80          |             |             |             |             |
| STD OREAS45EA                             | Standard          | 6           | 1023        | 0.11        | 174         | 0.106       | <20        | 3.47        | 0.03        | 0.06       | 5          | <0.05      | <1          | <5          | <5          | 91          |             |             |             |             |
| STD OXC129                                | Standard          |             |             |             |             |             |            |             |             |            |            |            |             |             |             |             |             |             |             |             |
| STD OXC129                                | Standard          |             |             |             |             |             |            |             |             |            |            |            |             |             |             |             |             |             |             |             |
| STD OXI121                                | Standard          |             |             |             |             |             |            |             |             |            |            |            |             |             |             |             |             |             |             |             |
| STD OXI121                                | Standard          |             |             |             |             |             |            |             |             |            |            |            |             |             |             |             |             |             |             |             |
| STD SP72                                  | Standard          |             |             |             |             |             |            |             |             |            |            |            |             |             |             |             |             |             |             | 87.4        |
| STD SP72                                  | Standard          |             |             |             |             |             |            |             |             |            |            |            |             |             |             |             |             |             |             | 83.4        |
| STD OXC129 Expected                       |                   |             |             |             |             |             |            |             |             |            |            |            |             |             |             |             |             |             |             |             |
| STD OXI121 Expected STD CDN FCM6 Expected |                   |             |             |             |             |             |            |             |             |            |            |            |             |             |             |             | 1.25        | 1.52        | 9.27        |             |
| STD SP72 Expected                         |                   |             |             |             |             |             |            |             |             |            |            |            |             |             |             |             |             |             |             | 83          |
| STD DS10 Expected                         |                   | 17.5        | 54.6        | 0.775       | 412         | 0.0817      |            | 1.0259      | 0.067       | 0.338      | 3.32       | 0.29       | 0.3         | 5.1         | 4.3         | 2.8         |             |             |             |             |



Pershing Resources 200 South Virginia Street 8th Flr

Reno NV 89501 USA

www.bureauveritas.com/um

Project:

New Enterprise

Report Date:

June 30, 2016

Inspectorate America Corporation 605 Boxington Way Suite 101 Sparks NV 89434 USA PHONE +1 775 359 6311

Page:

2 of 2

Part: 1 of 2

| QUALITY CO             | ONTROL     | REP  | OR     | Т     |       |       |       |       |       |       |       |       |       |       |       | RE    | N16   | 000   | 306   | .1    |        |
|------------------------|------------|------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
|                        |            | WGHT | FA430  | AQ300  |
|                        |            | Wgt  | Au     | Мо    | Cu    | Pb    | Zn    | Ag    | Ni    | Co    | Mn    | Fe    | As    | Th    | Sr    | Cd    | Sb    | Bi    | V     | Ca    | F      |
|                        |            | kg   | ppm    | ppm   | ppm   | ppm   | ppm   | ppm   | ppm   | ppm   | ppm   | %     | ppm   | %     | %      |
|                        |            | 0.01 | 0.005  | 1     | 1     | 3     | 1     | 0.3   | 1     | 1     | 2     | 0.01  | 2     | 2     | 1     | 0.5   | 3     | 3     | 1     | 0.01  | 0.001  |
| STD OREAS45EA Expected |            |      |        | 1.6   | 709   | 14.3  | 31.4  | 0.26  | 381   | 52    | 400   | 23.51 | 10    | 10.7  | 3.5   |       |       |       | 303   | 0.036 | 0.029  |
| BLK                    | Blank      |      | <0.005 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |
| BLK                    | Blank      |      |        | <1    | <1    | 5     | 16    | <0.3  | <1    | <1    | <2    | <0.01 | <2    | <2    | <1    | <0.5  | <3    | <3    | <1    | <0.01 | <0.001 |
| BLK                    | Blank      |      | <0.005 |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |
| BLK                    | Blank      |      |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |
| BLK                    | Blank      |      |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |
| BLK                    | Blank      |      |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |
| BLK                    | Blank      |      |        | <1    | <1    | <3    | <1    | <0.3  | <1    | <1    | <2    | <0.01 | <2    | <2    | <1    | <0.5  | <3    | <3    | <1    | <0.01 | <0.001 |
| Prep Wash              |            |      |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |
| ROCK-R3                | Prep Blank |      | <0.005 | <1    | 2     | <3    | <1    | <0.3  | 1     | <1    | 52    | 0.62  | 2     | <2    | 7     | <0.5  | <3    | <3    | 7     | 0.31  | 0.002  |



Pershing Resources 200 South Virginia Street 8th Flr

Reno NV 89501 USA

Project:

New Enterprise

Report Date:

June 30, 2016

Inspectorate America Corporation 605 Boxington Way Suite 101 Sparks NV 89434 USA PHONE +1 775 359 6311

Page:

2 of 2

Part: 2 of 2

# QUALITY CONTROL REPORT

## REN16000306.1

|                        |            | AQ300 | AQ300 | AQ300 | AQ300 | AQ300  | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ410 | AQ410 | AQ410 | FA53 |
|------------------------|------------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|------|
|                        |            | La    | Cr    | Mg    | Ва    | Ti     | В     | Al    | Na    | K     | W     | S     | Hg    | TI    | Ga    | Sc    | Cu    | Pb    | Zn    | A    |
|                        |            | ppm   | ppm   | %     | ppm   | %      | ppm   | %     | %     | %     | ppm   | %     | ppm   | ppm   | ppm   | ppm   | %     | %     | %     | ppn  |
|                        |            | 1     | 1     | 0.01  | 1     | 0.001  | 20    | 0.01  | 0.01  | 0.01  | 2     | 0.05  | 1     | 5     | 5     | 5     | 0.01  | 0.01  | 0.01  | 2    |
| STD OREAS45EA Expected |            | 7.06  | 849   | 0.095 | 148   | 0.0984 |       | 3.13  | 0.02  | 0.053 |       | 0.036 |       |       | 12.4  | 78    |       |       |       |      |
| BLK                    | Blank      |       |       |       |       |        |       |       |       |       |       |       |       |       |       |       |       |       |       |      |
| BLK                    | Blank      | <1    | <1    | <0.01 | <1    | <0.001 | <20   | <0.01 | <0.01 | <0.01 | <2    | <0.05 | <1    | <5    | <5    | <5    |       |       |       |      |
| BLK                    | Blank      |       |       |       |       |        |       |       |       |       |       |       |       |       |       |       |       |       |       |      |
| BLK                    | Blank      |       |       |       |       |        |       |       |       |       |       |       |       |       |       |       |       |       |       | <20  |
| BLK                    | Blank      |       |       |       |       |        |       |       |       |       |       |       |       |       |       |       | <0.01 |       | <0.01 |      |
| BLK                    | Blank      |       |       |       |       |        |       |       |       |       |       |       |       |       |       |       |       |       |       | <20  |
| BLK                    | Blank      | <1    | <1    | <0.01 | <1    | <0.001 | <20   | <0.01 | <0.01 | <0.01 | <2    | <0.05 | <1    | <5    | <5    | <5    |       |       |       |      |
| Prep Wash              |            |       |       |       |       |        |       |       |       |       |       |       |       |       |       |       |       |       |       |      |
| ROCK-R3                | Prep Blank | 2     | 3     | 0.02  | 59    | 0.003  | <20   | 0.15  | <0.01 | 0.03  | <2    | <0.05 | <1    | <5    | <5    | <5    |       |       |       |      |



**Pershing Resources** 

200 South Virginia Street 8th Flr Reno Nevada 89501 USA

Submitted By: Receiving Lab:

Received:

USA-Reno November 14, 2016

nicholas Barr

Report Date: December 20, 2016

Page: 1 of 2

### www.bureauveritas.com/um

Inspectorate America Corporation 605 Boxington Way Suite 101 Sparks Nevada 89434 USA PHONE +1 775 359 6311

### **CERTIFICATE OF ANALYSIS**

### REN16000662.2

#### **CLIENT JOB INFORMATION**

Project: New Enterprise
Shipment ID: EN-013 to EN-031

P.O. Number

Number of Samples: 19

### **SAMPLE DISPOSAL**

RTRN-PLP Return After 90 days

DISP-RJT Dispose of Reject After 90 days

Bureau Veritas does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

### SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

| Procedure<br>Code | Number of<br>Samples | Code Description                                    | Test<br>Wgt (g) | Report<br>Status | Lab |
|-------------------|----------------------|-----------------------------------------------------|-----------------|------------------|-----|
| PRP70-250         | 19                   | Crush, split and pulverize 250 g rock to 200 mesh   |                 |                  | REN |
| FA330-Au          | 19                   | Fire assay fusion Au by ICP-ES                      | 30              | Completed        | REN |
| AQ300             | 19                   | 1:1:1 Aqua Regia digestion ICP-ES analysis          | 0.5             | Completed        | REN |
| DRPLP             | 19                   | Warehouse handling / disposition of pulps           |                 |                  | REN |
| DRRJT             | 19                   | Warehouse handling / Disposition of reject          |                 |                  | REN |
| EN002             | 6                    | Environmental disposal charge-Fire assay lead waste |                 |                  | REN |
| FA530-Au          | 1                    | Au by 30g fire assay, Grav finish                   | 30              | Completed        | REN |
| AQ410             | 9                    | Ore grade analysis by Aqua Regia and AAS            | 0.1             | Completed        | REN |
| FA530-Ag          | 5                    | Ag by 30g fire assay, Grav finish                   | 30              | Completed        | REN |

#### **ADDITIONAL COMMENTS**

Invoice To: Pershing Resources

200 South Virginia Street 8th Flr

Reno Nevada 89501

USA

CC: David Jordan

Steve Suaran bill Earnshaw

Invoice Distribution

Carolyn Bautista

Carolyn Bautista

Data Analysis Socialist

The results of this assay were based solely upon the content of the sample submitted. Any decision to invest should be made only after the potential investment value of the claim or deposit has been determined based on the results of multiple samples of geologic materials collected by the prospective investor or by a qualified person selected by him and based on an evaluation of all engineering data which is available concerning any proposed project. For our complete terms and conditions please see our website at www.bureauveritas.com/um.



Client:

**Pershing Resources** 

200 South Virginia Street 8th Flr Reno Nevada 89501 USA

Project:

New Enterprise

Report Date:

December 20, 2016

Inspectorate America Corporation

605 Boxington Way Suite 101 Sparks Nevada 89434 USA

PHONE +1 775 359 6311

Page:

2 of 2

Part: 1 of 2

# CERTIFICATE OF ANALYSIS

## REN16000662.2

| Method           | WGHT | FA330  | AQ300 | AQ300  | AQ300  | AQ300  | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 |
|------------------|------|--------|-------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Analyte          | Wgt  | Au     | Мо    | Cu     | Pb     | Zn     | Ag    | Ni    | Co    | Mn    | Fe    | As    | Th    | Sr    | Cd    | Sb    | Bi    | V     | Ca    | Р     |
| Unit             | kg   | ppb    | ppm   | ppm    | ppm    | ppm    | ppm   | ppm   | ppm   | ppm   | %     | ppm   | %     | %     |
| MDL              | 0.01 | 2      | 1     | 1      | 3      | 1      | 0.3   | 1     | 1     | 2     | 0.01  | 2     | 2     | 1     | 0.5   | 3     | 3     | 1     | 0.01  | 0.001 |
| EN-013 Rock Chip | 1.23 | 1734   | <1    | 2847   | >10000 | >10000 | >100  | 7     | 9     | 813   | 5.88  | 49    | 4     | 12    | 460.4 | <3    | 873   | 2     | 0.43  | 0.009 |
| EN-014 Rock Chip | 1.51 | >10000 | 18    | 3080   | >10000 | >10000 | 85.7  | 9     | 6     | 1580  | 7.99  | 299   | 6     | 26    | 860.9 | 8     | 217   | 19    | 0.17  | 0.021 |
| EN-015 Rock Chip | 1.76 | 2394   | <1    | 1053   | >10000 | >10000 | 54.4  | 7     | 9     | 173   | 4.50  | 56    | 3     | 3     | 432.8 | <3    | 149   | 2     | 0.09  | 0.011 |
| EN-016 Rock Chip | 0.86 | 1233   | 19    | 2654   | >10000 | 1867   | 79.6  | 10    | 3     | 55    | 12.06 | 41    | 9     | 18    | 7.3   | <3    | 115   | 57    | 0.06  | 0.078 |
| EN-017 Rock Chip | 1.18 | 7053   | 5     | >10000 | >10000 | 1258   | >100  | 3     | 2     | 98    | 7.92  | 175   | 6     | 22    | 3.5   | 22    | 26    | 12    | 0.05  | 0.048 |
| EN-018 Rock Chip | 2.72 | 3812   | 6     | 6606   | >10000 | 7771   | >100  | 6     | 3     | 95    | 3.86  | 82    | 4     | 17    | 49.9  | 14    | 63    | 2     | 0.14  | 0.009 |
| EN-019 Rock Chip | 2.89 | 1335   | 9     | 2186   | >10000 | 1552   | 41.9  | 4     | 3     | 236   | 4.35  | 193   | 4     | 43    | 6.9   | <3    | 13    | 15    | 0.66  | 0.036 |
| EN-020 Rock Chip | 1.60 | 933    | 9     | 1721   | 7213   | 5371   | 36.0  | 8     | 5     | 321   | 3.57  | 431   | 4     | 31    | 44.3  | 34    | 36    | 9     | 0.94  | 0.019 |
| EN-021 Rock Chip | 2.16 | 2780   | 17    | 3695   | >10000 | 1028   | 41.3  | 4     | 2     | 103   | 4.23  | 801   | 4     | 43    | 2.4   | 145   | 4     | 24    | 0.05  | 0.031 |
| EN-022 Rock Chip | 1.87 | 9072   | 6     | 3709   | >10000 | 620    | 79.0  | 2     | 2     | 67    | 6.22  | 167   | 7     | 14    | 1.3   | 7     | 10    | 13    | 0.06  | 0.096 |
| EN-023 Rock Chip | 1.75 | 3      | 281   | 120    | 79     | 51     | 0.5   | 2     | <1    | 73    | 2.98  | 3     | 4     | 26    | <0.5  | <3    | <3    | 5     | 0.11  | 0.028 |
| EN-024 Rock Chip | 2.24 | 27     | 640   | 579    | 204    | 43     | 3.5   | 2     | 3     | 55    | 4.30  | 17    | 4     | 14    | <0.5  | <3    | <3    | 5     | 0.03  | 0.017 |
| EN-025 Rock Chip | 2.45 | 22     | 125   | 154    | 131    | 21     | 1.3   | <1    | <1    | 54    | 2.14  | 6     | 4     | 22    | <0.5  | <3    | <3    | 3     | 0.04  | 0.018 |
| EN-026 Rock Chip | 2.04 | <2     | 351   | 1165   | 14     | 96     | 0.5   | 2     | 5     | 167   | 1.65  | <2    | 5     | 17    | <0.5  | <3    | <3    | 8     | 0.56  | 0.032 |
| EN-027 Rock Chip | 2.70 | 2      | 579   | 542    | 31     | 29     | 8.0   | <1    | 4     | 381   | 2.46  | 4     | 4     | 37    | <0.5  | <3    | <3    | 9     | 0.06  | 0.020 |
| EN-028 Rock Chip | 2.56 | 4      | 145   | 263    | 23     | 12     | 0.7   | 2     | <1    | 37    | 1.18  | 4     | 4     | 13    | <0.5  | <3    | <3    | 5     | 0.04  | 0.016 |
| EN-029 Rock Chip | 2.62 | 1591   | >2000 | 2462   | 9280   | 82     | >100  | 3     | 4     | 70    | 3.70  | 120   | 4     | 61    | 36.7  | 1014  | 7     | 5     | 0.10  | 0.116 |
| EN-030 Rock Chip | 2.11 | 464    | >2000 | 2146   | 300    | 216    | 42.1  | 1     | <1    | 68    | 1.74  | 6     | <2    | 4     | 1.5   | 8     | 18    | 1     | 0.08  | 0.001 |
| EN-031 Rock Chip | 2.71 | 1275   | >2000 | 3761   | 8117   | 79     | >100  | <1    | <1    | 71    | 3.39  | 170   | 4     | 16    | <0.5  | 494   | 58    | 2     | 0.03  | 0.050 |



Client: Pershing Resources

200 South Virginia Street 8th Flr Reno Nevada 89501 USA

Project:

New Enterprise

Report Date:

December 20, 2016

Inspectorate America Corporation

605 Boxington Way Suite 101 Sparks Nevada 89434 USA

PHONE +1 775 359 6311

Page: 2 of 2

Part: 2 of 2

| CERTIFIC | CATE OF AN | IALY  | ′SIS  |       |       |        |       |       |       |       |       |       |       |       |       | RE    | EN1   | 3000  | )662  | 2     |       |
|----------|------------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|          | Method     | AQ300 | AQ300 | AQ300 | AQ300 | AQ300  | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | FA530 | AQ410 | AQ410 | AQ410 | FA530 |
|          | Analyte    | La    | Cr    | Mg    | Ва    | Ti     | В     | Al    | Na    | K     | w     | s     | Hg    | TI    | Ga    | Sc    | Au    | Cu    | Pb    | Zn    | Ag    |
|          | Unit       | ppm   | ppm   | %     | ppm   | %      | ppm   | %     | %     | %     | ppm   | %     | ppm   | ppm   | ppm   | ppm   | ppm   | %     | %     | %     | ppm   |
|          | MDL        | 1     | 1     | 0.01  | 1     | 0.001  | 20    | 0.01  | 0.01  | 0.01  | 2     | 0.05  | 1     | 5     | 5     | 5     | 0.9   | 0.01  | 0.01  | 0.01  | 20    |
| EN-013   | Rock Chip  | <1    | 3     | 0.09  | 35    | <0.001 | <20   | 0.08  | <0.01 | 0.07  | <2    | 9.48  | 8     | <5    | <5    | <5    |       |       | 18.80 | 6.97  | 488.6 |
| EN-014   | Rock Chip  | 3     | 2     | 0.05  | 88    | 0.001  | <20   | 0.21  | 0.01  | 0.14  | <2    | 0.46  | 7     | <5    | <5    | <5    | 8.9   |       | 6.71  | 18.53 |       |
| EN-015   | Rock Chip  | <1    | 3     | 0.03  | 8     | <0.001 | <20   | 0.06  | <0.01 | 0.06  | <2    | 6.42  | 4     | <5    | <5    | <5    |       |       | 2.01  | 6.61  |       |
| EN-016   | Rock Chip  | 4     | <1    | 0.03  | 361   | 0.002  | <20   | 0.12  | 0.01  | 0.15  | <2    | 0.32  | <1    | <5    | <5    | <5    |       |       | 1.85  |       |       |
| EN-017   | Rock Chip  | 6     | 3     | 0.04  | 76    | 0.002  | <20   | 0.39  | 0.02  | 0.37  | <2    | 1.04  | 19    | <5    | <5    | <5    |       | 1.20  | 16.74 |       | 770.2 |
| EN-018   | Rock Chip  | <1    | 3     | <0.01 | 79    | <0.001 | <20   | 0.05  | <0.01 | 0.03  | <2    | 3.66  | 11    | <5    | <5    | <5    |       |       | 11.71 |       | 326.2 |
| EN-019   | Rock Chip  | 1     | 5     | 0.06  | 652   | 0.002  | <20   | 0.58  | 0.02  | 0.36  | <2    | 0.53  | 12    | <5    | <5    | <5    |       |       | 3.43  |       |       |
| EN-020   | Rock Chip  | <1    | 3     | 0.34  | 210   | 0.002  | <20   | 0.23  | <0.01 | 0.20  | <2    | 2.21  | 4     | <5    | <5    | <5    |       |       |       |       |       |
| EN-021   | Rock Chip  | 2     | 6     | 0.07  | 710   | 0.004  | <20   | 0.59  | 0.01  | 0.37  | <2    | 0.87  | 31    | <5    | <5    | <5    |       |       | 9.60  |       |       |
| EN-022   | Rock Chip  | 9     | 11    | 0.03  | 72    | 0.002  | <20   | 0.31  | 0.02  | 0.47  | <2    | 1.25  | 8     | <5    | <5    | <5    |       |       | 4.98  |       |       |
| EN-023   | Rock Chip  | 8     | 2     | 0.07  | 144   | 0.004  | <20   | 0.40  | 0.03  | 0.32  | <2    | 0.24  | <1    | <5    | <5    | <5    |       |       |       |       |       |
| EN-024   | Rock Chip  | 3     | 2     | 0.02  | 87    | 0.002  | <20   | 0.27  | 0.02  | 0.19  | 6     | 0.84  | <1    | <5    | <5    | <5    |       |       |       |       |       |
| EN-025   | Rock Chip  | 5     | 2     | 0.02  | 281   | 0.002  | <20   | 0.40  | 0.02  | 0.34  | <2    | 0.30  | <1    | <5    | <5    | <5    |       |       |       |       |       |
| EN-026   | Rock Chip  | 9     | 1     | 0.12  | 192   | 0.010  | <20   | 0.75  | 0.03  | 0.40  | <2    | 0.94  | <1    | <5    | 6     | <5    |       |       |       |       |       |
| EN-027   | Rock Chip  | 6     | 3     | 0.06  | 169   | 0.006  | <20   | 0.43  | 0.06  | 0.27  | 16    | 0.27  | <1    | <5    | <5    | <5    |       |       |       |       |       |
| EN-028   | Rock Chip  | 8     | 2     | 0.03  | 93    | 0.004  | <20   | 0.41  | 0.02  | 0.29  | <2    | 0.09  | <1    | <5    | <5    | <5    |       |       |       |       |       |
| EN-029   | Rock Chip  | 3     | 5     | 0.03  | 292   | 0.002  | <20   | 0.31  | 0.06  | 0.22  | >100  | 1.13  | 9     | <5    | <5    | <5    |       |       |       |       | 264.6 |
| EN-030   | Rock Chip  | <1    | 4     | <0.01 | 44    | 0.001  | <20   | 0.15  | <0.01 | 0.11  | 73    | 1.48  | 2     | <5    | <5    | <5    |       |       |       |       |       |
| EN-031   | Rock Chip  | 3     | 2     | <0.01 | 174   | 0.001  | <20   | 0.20  | 0.01  | 0.20  | >100  | 0.29  | >50   | <5    | <5    | <5    |       |       |       |       | 247.0 |



Client: Pershing Resources

200 South Virginia Street 8th Flr Reno Nevada 89501 USA

Project:

New Enterprise

Report Date:

December 20, 2016

Inspectorate America Corporation 605 Boxington Way Suite 101 Sparks Nevada 89434 USA PHONE +1 775 359 6311

Page: 1 of 2

Part: 1 of 2

| QUALITY CON                | NTROL           | REP  | OR     | Τ     |         |         |        |       |       |       |       |        |       |       |       | RE    | N16   | 000   | 662.  | 2      |        |
|----------------------------|-----------------|------|--------|-------|---------|---------|--------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|--------|--------|
|                            | Method          | WGHT | FA330  | AQ300 | AQ300   | AQ300   | AQ300  | AQ300 | AQ300 | AQ300 | AQ300 | AQ300  | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300  | AQ300  |
|                            | Analyte         | Wgt  | Au     | Мо    | Cu      | Pb      | Zn     | Ag    | Ni    | Co    | Mn    | Fe     | As    | Th    | Sr    | Cd    | Sb    | Bi    | V     | Ca     | Р      |
|                            | Unit            | kg   | ppb    | ppm   | ppm     | ppm     | ppm    | ppm   | ppm   | ppm   | ppm   | %      | ppm   | %      | %      |
| Dula Dualisates            | MDL             | 0.01 | 2      | 1     | 1       | 3       | 1      | 0.3   | 1     | 1     | 2     | 0.01   | 2     | 2     | 1     | 0.5   | 3     | 3     | 1     | 0.01   | 0.001  |
| Pulp Duplicates REP EN-014 | QC              |      |        |       |         |         |        |       |       |       |       |        |       |       |       |       |       |       |       |        |        |
| -                          |                 | 4.40 | 7050   |       | - 10000 | > 10000 | 4050   | > 400 |       |       |       | 7.00   | 475   |       |       | 2.5   | 20    | 200   | 40    | 0.05   | 0.040  |
| EN-017                     | Rock Chip<br>QC | 1.18 | 7053   | 5     | >10000  | >10000  | 1258   | >100  | 3     | 2     | 98    | 7.92   | 175   | 6     | 22    | 3.5   | 22    | 26    | 12    | 0.05   | 0.048  |
| REP EN-017                 |                 | 0.70 | 7367   |       | 0000    | . 10000 | 7774   | . 400 |       |       | 0.5   | 0.00   |       |       | 47    | 40.0  | 4.4   |       |       | 0.44   | 0.000  |
| EN-018                     | Rock Chip       | 2.72 | 3812   | 6     | 6606    | >10000  | 7771   | >100  | 6     | 3     | 95    | 3.86   | 82    | 4     | 17    | 49.9  | 14    | 63    | 2     | 0.14   | 0.009  |
| REP EN-018                 | QC              |      |        |       |         |         |        |       |       |       |       |        |       |       |       |       |       |       |       |        |        |
| EN-022                     | Rock Chip       | 1.87 | 9072   | 6     | 3709    | >10000  | 620    | 79.0  | 2     | 2     | 67    | 6.22   | 167   | 7     | 14    | 1.3   | 7     | 10    | 13    | 0.06   | 0.096  |
| REP EN-022                 | QC              |      | >10000 |       |         |         |        |       |       |       |       |        |       |       |       |       |       |       |       |        |        |
| EN-024                     | Rock Chip       | 2.24 | 27     | 640   | 579     | 204     | 43     | 3.5   | 2     | 3     | 55    | 4.30   | 17    | 4     | 14    | <0.5  | <3    | <3    | 5     | 0.03   | 0.017  |
| REP EN-024                 | QC              |      | 25     |       |         |         |        |       |       |       |       |        |       |       |       |       |       |       |       |        |        |
| EN-027                     | Rock Chip       | 2.70 | 2      | 579   | 542     | 31      | 29     | 8.0   | <1    | 4     | 381   | 2.46   | 4     | 4     | 37    | <0.5  | <3    | <3    | 9     | 0.06   | 0.020  |
| REP EN-027                 | QC              |      |        | 556   | 529     | 29      | 27     | 8.0   | <1    | 4     | 370   | 2.39   | 3     | 4     | 36    | <0.5  | <3    | <3    | 9     | 0.06   | 0.019  |
| Core Reject Duplicates     |                 |      |        |       |         |         |        |       |       |       |       |        |       |       |       |       |       |       |       |        |        |
| EN-014                     | Rock Chip       | 1.51 | >10000 | 18    |         | >10000  |        | 85.7  | 9     | 6     | 1580  | 7.99   | 299   | 6     | 26    | 860.9 | 8     | 217   | 19    | 0.17   | 0.021  |
| DUP EN-014                 | QC              |      | 3243   | 20    | 3319    | >10000  | >10000 | 86.0  | 9     | 6     | 1688  | 8.75   | 298   | 7     | 28    | 936.0 | 34    | 225   | 19    | 0.18   | 0.018  |
| Reference Materials        |                 |      |        |       |         |         |        |       |       |       |       |        |       |       |       |       |       |       |       |        |        |
| STD CDN FCM6               | Standard        |      |        |       |         |         |        |       |       |       |       |        |       |       |       |       |       |       |       |        |        |
| STD DS10                   | Standard        |      |        | 11    | 140     | 137     | 319    | 1.4   | 66    | 11    | 779   | 2.49   | 38    | 11    | 55    | 1.6   | 5     | 10    | 39    | 0.96   | 0.068  |
| STD OREAS45EA              | Standard        |      |        | 2     | 672     | 29      | 181    | 0.7   | 369   | 50    | 359   | 21.64  | 14    | 27    | 4     | <0.5  | 16    | <3    | 286   | 0.03   | 0.023  |
| STD OXC129                 | Standard        |      | 206    |       |         |         |        |       |       |       |       |        |       |       |       |       |       |       |       |        |        |
| STD OXC129                 | Standard        |      | 215    |       |         |         |        |       |       |       |       |        |       |       |       |       |       |       |       |        |        |
| STD OXE101                 | Standard        |      | 586    |       |         |         |        |       |       |       |       |        |       |       |       |       |       |       |       |        |        |
| STD OXE101                 | Standard        |      | 605    |       |         |         |        |       |       |       |       |        |       |       |       |       |       |       |       |        |        |
| STD OXE101                 | Standard        |      | 633    |       |         |         |        |       |       |       |       |        |       |       |       |       |       |       |       |        |        |
| STD SP37                   | Standard        |      |        |       |         |         |        |       |       |       |       |        |       |       |       |       |       |       |       |        |        |
| STD SP72                   | Standard        |      |        |       |         |         |        |       |       |       |       |        |       |       |       |       |       |       |       |        |        |
| STD DS10 Expected          |                 |      |        | 13.6  | 154.61  | 150.55  | 370    | 2.02  | 74.6  | 12.9  | 875   | 2.7188 | 46.2  | 7.5   | 67.1  | 2.62  | 9     | 11.65 | 43    | 1.0625 | 0.0765 |
| STD OREAS45EA Expected     |                 |      |        | 1.6   | 709     | 14.3    | 31.4   | 0.26  | 381   | 52    | 400   | 23.51  | 10    | 10.7  | 3.5   |       |       |       | 303   | 0.036  | 0.029  |
| STD SP37 Expected          |                 |      |        |       |         |         |        |       |       |       |       |        |       |       |       |       |       |       |       |        |        |



**Pershing Resources** 

200 South Virginia Street 8th Flr Reno Nevada 89501 USA

Project:

New Enterprise

Report Date:

December 20, 2016

Inspectorate America Corporation 605 Boxington Way Suite 101 Sparks Nevada 89434 USA

PHONE +1 775 359 6311

Page: 1 of 2

Part: 2 of 2

| QUALITY CO             | NTROL     | REP   | OR    | Т     |       |        |       |        |       |       |       |       |       |       |       | RE    | N16   | 000   | 662.  | 2     |       |
|------------------------|-----------|-------|-------|-------|-------|--------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                        | Method    | AQ300 | AQ300 | AQ300 | AQ300 | AQ300  | AQ300 | AQ300  | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | FA530 | AQ410 | AQ410 | AQ410 | FA530 |
|                        | Analyte   | La    | Cr    | Mg    | Ва    | Ti     | В     | Al     | Na    | K     | w     | s     | Hg    | TI    | Ga    | Sc    | Au    | Cu    | Pb    | Zn    | Ag    |
|                        | Unit      | ppm   | ppm   | %     | ppm   | %      | ppm   | %      | %     | %     | ppm   | %     | ppm   | ppm   | ppm   | ppm   | ppm   | %     | %     | %     | ppm   |
|                        | MDL       | 1     | 1     | 0.01  | 1     | 0.001  | 20    | 0.01   | 0.01  | 0.01  | 2     | 0.05  | 1     | 5     | 5     | 5     | 0.9   | 0.01  | 0.01  | 0.01  | 20    |
| Pulp Duplicates        |           |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       |       |       |       |       |       |
| REP EN-014             | QC        |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       | 9.6   |       |       |       |       |
| EN-017                 | Rock Chip | 6     | 3     | 0.04  | 76    | 0.002  | <20   | 0.39   | 0.02  | 0.37  | <2    | 1.04  | 19    | <5    | <5    | <5    |       | 1.20  | 16.74 |       | 770.2 |
| REP EN-017             | QC        |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       |       |       |       |       |       |
| EN-018                 | Rock Chip | <1    | 3     | <0.01 | 79    | <0.001 | <20   | 0.05   | <0.01 | 0.03  | <2    | 3.66  | 11    | <5    | <5    | <5    |       |       | 11.71 |       | 326.2 |
| REP EN-018             | QC        |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       |       | 0.66  | 10.73 | 0.72  | 305.8 |
| EN-022                 | Rock Chip | 9     | 11    | 0.03  | 72    | 0.002  | <20   | 0.31   | 0.02  | 0.47  | <2    | 1.25  | 8     | <5    | <5    | <5    |       |       | 4.98  |       |       |
| REP EN-022             | QC        |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       |       |       |       |       |       |
| EN-024                 | Rock Chip | 3     | 2     | 0.02  | 87    | 0.002  | <20   | 0.27   | 0.02  | 0.19  | 6     | 0.84  | <1    | <5    | <5    | <5    |       |       |       |       |       |
| REP EN-024             | QC        |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       |       |       |       |       |       |
| EN-027                 | Rock Chip | 6     | 3     | 0.06  | 169   | 0.006  | <20   | 0.43   | 0.06  | 0.27  | 16    | 0.27  | <1    | <5    | <5    | <5    |       |       |       |       |       |
| REP EN-027             | QC        | 6     | 3     | 0.05  | 166   | 0.006  | <20   | 0.41   | 0.06  | 0.26  | 14    | 0.26  | <1    | <5    | <5    | <5    |       |       |       |       |       |
| Core Reject Duplicates |           |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       |       |       |       |       |       |
| EN-014                 | Rock Chip | 3     | 2     | 0.05  | 88    | 0.001  | <20   | 0.21   | 0.01  | 0.14  | <2    | 0.46  | 7     | <5    | <5    | <5    | 8.9   |       | 6.71  | 18.53 |       |
| DUP EN-014             | QC        | 3     | <1    | 0.04  | 95    | 0.001  | <20   | 0.14   | 0.01  | 0.11  | <2    | 0.48  | 8     | <5    | <5    | <5    | 3.4   |       | 6.92  | 16.82 |       |
| Reference Materials    |           |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       |       |       |       |       |       |
| STD CDN FCM6           | Standard  |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       |       | 1.24  | 1.52  | 9.01  |       |
| STD DS10               | Standard  | 13    | 47    | 0.69  | 376   | 0.068  | <20   | 0.92   | 0.06  | 0.30  | <2    | 0.26  | <1    | 7     | <5    | <5    |       |       |       |       |       |
| STD OREAS45EA          | Standard  | 6     | 835   | 0.09  | 144   | 0.093  | <20   | 2.94   | 0.02  | 0.05  | 5     | <0.05 | <1    | 6     | <5    | 78    |       |       |       |       |       |
| STD OXC129             | Standard  |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       |       |       |       |       |       |
| STD OXC129             | Standard  |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       |       |       |       |       |       |
| STD OXE101             | Standard  |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       |       |       |       |       |       |
| STD OXE101             | Standard  |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       |       |       |       |       |       |
| STD OXE101             | Standard  |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       |       |       |       |       |       |
| STD SP37               | Standard  |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       | 18.1  |       |       |       |       |
| STD SP72               | Standard  |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       |       |       |       |       | 100.7 |
| STD DS10 Expected      |           | 17.5  | 54.6  | 0.775 | 412   | 0.0817 | 7.13  | 1.0259 | 0.067 | 0.338 | 3.32  | 0.29  | 0.3   | 5.1   | 4.3   | 2.8   |       |       |       |       |       |
| STD OREAS45EA Expected |           | 7.06  | 849   | 0.095 | 148   | 0.0984 |       | 3.13   | 0.02  | 0.053 |       | 0.036 |       |       | 12.4  | 78    |       |       |       |       |       |
| STD SP37 Expected      |           |       |       |       |       |        |       |        |       |       |       |       |       |       |       |       | 18.14 |       |       |       |       |



Pershing Resources 200 South Virginia Street 8th Flr

200 South Virginia Street 8th F Reno Nevada 89501 USA

Project:

New Enterprise

2 of 2

Report Date:

December 20, 2016

Inspectorate America Corporation 605 Boxington Way Suite 101 Sparks Nevada 89434 USA PHONE +1 775 359 6311

Page:

Part:

1 of 2

| QUALITY C             | ONTROL     | REP  | OR    | Γ     |       |       |       |       |       |       |       |       |       |       |       | RE    | N16   | 000   | 662.  | .2    |        |
|-----------------------|------------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|
|                       |            | WGHT | FA330 | AQ300  |
|                       |            | Wgt  | Au    | Мо    | Cu    | Pb    | Zn    | Ag    | Ni    | Co    | Mn    | Fe    | As    | Th    | Sr    | Cd    | Sb    | Bi    | V     | Ca    | Р      |
|                       |            | kg   | ppb   | ppm   | %     | ppm   | %     | %      |
|                       |            | 0.01 | 2     | 1     | 1     | 3     | 1     | 0.3   | 1     | 1     | 2     | 0.01  | 2     | 2     | 1     | 0.5   | 3     | 3     | 1     | 0.01  | 0.001  |
| STD OXC129 Expected   |            |      | 205   |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |
| STD OXE101 Expected   |            |      | 607   |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |
| STD SP72 Expected     |            |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |
| STD CDN FCM6 Expected |            |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |
| BLK                   | Blank      |      | <2    |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |
| BLK                   | Blank      |      |       | <1    | <1    | <3    | 16    | <0.3  | <1    | <1    | <2    | <0.01 | <2    | <2    | <1    | <0.5  | <3    | <3    | <1    | <0.01 | <0.001 |
| BLK                   | Blank      |      | 2     |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |
| BLK                   | Blank      |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |
| BLK                   | Blank      |      | <2    |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |
| BLK                   | Blank      |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |
| BLK                   | Blank      |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |
| Prep Wash             |            |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |
| ROCK-R3               | Prep Blank |      | <2    | <1    | 3     | <3    | 2     | <0.3  | 2     | <1    | 44    | 0.57  | 3     | <2    | 4     | <0.5  | <3    | <3    | 8     | 0.14  | 0.002  |



Pershing Resources 200 South Virginia Street 8th Flr

200 South Virginia Street 8th F Reno Nevada 89501 USA

Project:

New Enterprise

Report Date:

December 20, 2016

2 of 2

Inspectorate America Corporation 605 Boxington Way Suite 101 Sparks Nevada 89434 USA

605 Boxington Way Suite 101 Sparks Nevada 89434 USA PHONE +1 775 359 6311

Page:

Part:

2 of 2

| QUALITY CO            | ONTROL     | REP   | POR   | Т     |       |        |       |       |       |       |       |       |       |       |       | RE    | N16   | 000   | 662.  | 2     |       |
|-----------------------|------------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                       |            | AQ300 | AQ300 | AQ300 | AQ300 | AQ300  | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | AQ300 | FA530 | AQ410 | AQ410 | AQ410 | FA530 |
|                       |            | La    | Cr    | Mg    | Ва    | Ti     | В     | Al    | Na    | K     | w     | s     | Hg    | TI    | Ga    | Sc    | Au    | Cu    | Pb    | Zn    | Ag    |
|                       |            | ppm   | ppm   | %     | ppm   | %      | ppm   | %     | %     | %     | ppm   | %     | ppm   | ppm   | ppm   | ppm   | ppm   | %     | %     | %     | ppm   |
|                       |            | 1     | 1     | 0.01  | 1     | 0.001  | 20    | 0.01  | 0.01  | 0.01  | 2     | 0.05  | 1     | 5     | 5     | 5     | 0.9   | 0.01  | 0.01  | 0.01  | 20    |
| STD OXC129 Expected   |            |       |       |       |       |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| STD OXE101 Expected   |            |       |       |       |       |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| STD SP72 Expected     |            |       |       |       |       |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       | 83    |
| STD CDN FCM6 Expected |            |       |       |       |       |        |       |       |       |       |       |       |       |       |       |       |       | 1.25  | 1.52  | 9.27  |       |
| BLK                   | Blank      |       |       |       |       |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| BLK                   | Blank      | <1    | <1    | <0.01 | <1    | <0.001 | <20   | <0.01 | <0.01 | <0.01 | <2    | <0.05 | <1    | <5    | <5    | <5    |       |       |       |       |       |
| BLK                   | Blank      |       |       |       |       |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| BLK                   | Blank      |       |       |       |       |        |       |       |       |       |       |       |       |       |       |       | <0.9  |       |       |       |       |
| BLK                   | Blank      |       |       |       |       |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| BLK                   | Blank      |       |       |       |       |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       | <20   |
| BLK                   | Blank      |       |       |       |       |        |       |       |       |       |       |       |       |       |       |       |       | <0.01 | <0.01 | <0.01 |       |
| Prep Wash             |            |       |       |       |       |        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| ROCK-R3               | Prep Blank | <1    | 4     | 0.02  | 13    | 0.004  | <20   | 0.33  | <0.01 | 0.04  | <2    | <0.05 | <1    | <5    | <5    | <5    |       |       |       |       |       |

Appendix 6: 2017 AuRic Metallurgical Laboratories Analysis Report



Date: December 27, 2017

Ph: (801) 974 7677 Fax: (801) 974 9656

e-mail: Lab@AuRICLabs.com

### **ANALYSIS REPORT:**

**To:** Pershing Resources Company 200 South Virginia Street 8th Floor, Reno, Nevada 89501

| Reno, Nevada 895         | 4641           | 4640        |
|--------------------------|----------------|-------------|
| AuRIC Sample No.:        |                | 4642        |
| Contamon Commis ID No.   | New Enterprise | New Enterp. |
| Customer Sample ID No.:  | Raw Ore 2      | Ground Sc.  |
| Method (Code 1 / Code 2) | (AD3/ICPE)     | (AD3/ICPE)  |
| Units:                   | (ppm)          | (ppm)       |
| Ag                       | 466.7          | 172.9       |
| Al (wt %)                | 4.74%          | 2.72%       |
| As                       | 156.2          | 160.4       |
| Au                       | 1.8            | 3.3         |
| В                        | 28.7           | 41.8        |
| Ва                       | 20.8           | 8.9         |
| Be                       | 1.5            | 0.1         |
| Bi                       | 635.5          | 163.1       |
| Ca (wt %)                | <0.1%          | <0.1%       |
| Cd                       | 30.8           | 122.4       |
| Со                       | 18.5           | 35.7        |
| Cr                       | 84.4           | 117.6       |
| Cu                       | 18,502.6       | 3,594.0     |
| Fe (wt %)                | 4.72%          | 6.57%       |
| Ga                       | 15.8           | 12.7        |
| Hg                       | 5.9            | N/D         |
| Ir                       | N/D            | N/D         |
| K (wt %)                 | <0.1%          | <0.1%       |
| La                       | 144.8          | N/D         |
| Mg (wt %)                | <0.1%          | <0.1%       |
| Mn                       | 40.4           | 161.3       |
| Mo                       | 11.9           | 18.7        |
| Na (wt %)                | <0.1%          | <0.1%       |
| Ni                       | 10.8           | 23.8        |
| Os                       | N/D            | N/D         |
| Р                        | N/D            | 60.8        |
| Pb                       | 23,278.0       | 26,747.4    |
| Pd                       | N/D            | N/D         |
| Pt                       | N/D            | N/D         |
| Rh                       | N/D            | N/D         |
| Ru                       | N/D            | N/D         |
| S                        | 4,416.5        | 96,324.0    |
| Sb                       | 99.0           | N/D         |
| Sc                       | N/D            | N/D         |
| Si (wt %)                | N/D            | N/D         |
| Sr                       | 10.1           | 3.9         |
| Th                       | 58.8           | 68.8        |
| Ti                       | N/D            | 64.4        |
| TI                       | N/D            | N/D         |
| U                        | N/D            | N/D         |
| V                        | N/D            | N/D         |
| Zn                       | 1,710.4        | 12,853.7    |

### Analysis method:

<u>Code 1</u> <u>Procedure for Decomposition / Preparation of Solid Samples</u>

ADn Acid Decomposition (n: the number of acids used)

FAL Fire Assay with Lead button Collection
FAN Fire Assay with Nickel Sulfide Collection
FAT Fire Assay with Tin Button Collection

<u>Code 2</u> <u>Procedure for Measurement</u>

VOL Volumetry or Titrimetry

GRV Gravimetry

FAA Flame Atomic Absorption Spectrophotometry

GAA Graphite Furnace Atomic Absorption Spectrophotometry

ICPE Inductively Coupled Plasma Spectrophotometry

### **Miscellaneous**

N/A Not assayed N/D Not detected

#### **GENERAL DISCLAIMER:**

The results reported above are based on well-known, accepted analytical procedures used solely on the sample submitted by the customer. No warranty as to the reproducibility or extractability of the material other than the sample is given. AuRIC Metallurgical Laboratories, LLC makes no representation express or implied on the material other than that represented by the assayed sample.

Ahmet B. Altinay Metallurgical Engineer

3260 West Directors Row, Salt Lake City, Utah 84104 USA AuRIC Metallurgical Laboratories is a Limited Liability Company

Ph: (801) 974 7677 Fax: (801) 974 9656

e-mail: Lab@AuRICLabs.com



Date: December 27, 2017

Ph: (801) 974 7677 Fax: (801) 974 9656

e-mail: Lab@AuRICLabs.com

### **ANALYSIS REPORT:**

To: Pershing Resources Company c/o Mr. Joel Adams, 200 South Virginia Street 8th Floor, Reno. Nevada 89501

| Sample<br>No: | Customer<br>Sample ID No:                 | Method<br>Code1<br>Code2 | Gold<br>(Tr oz/ston) | Recovery<br>(%) | Silver<br>(Tr oz/ston) | Recovery<br>(%) |
|---------------|-------------------------------------------|--------------------------|----------------------|-----------------|------------------------|-----------------|
| 12910         | New Enterprise Raw Ore 2                  | FAL/ICPE                 | 0.032                |                 | 13.984                 |                 |
| 4643          | Sodium Cyanide leach                      |                          |                      |                 |                        |                 |
| 4043          | amenability test (5g/L NaCN,              |                          |                      |                 |                        |                 |
|               | pH: 12, 30g/100mL)                        | 4 hrs.                   | 0.028                | 87.5%           | 12.785                 | 91.4%           |
| 4645          | Ammonium thiosulfate                      |                          |                      |                 |                        |                 |
|               | Amenability test (0.1M, pH:11, 30g/100mL) | 8 hrs.                   | 0.029                | 90.6%           | 12.800                 | 91.5%           |
|               | p, 559, 1501112)                          | 3.110.                   | 0.020                | 30.070          | 12.000                 | 31.070          |

### **Analysis method:**

| Code 1 | Procedure for D | Decomposition / Pro | eparation of Solid Samples | j |
|--------|-----------------|---------------------|----------------------------|---|
|        |                 |                     |                            |   |

ADn Acid Decomposition (n: the number of acids used)

FAL Fire Assay with Lead button Collection FAN Fire Assay with Nickel Sulfide Collection FAT Fire Assay with Tin Button Collection

### **Code 2 Procedure for Measurement**

VOL Volumetry or Titrimetry

GRV Gravimetry

FAA Flame Atomic Absorption Spectrophotometry

GAA Graphite Furnace Atomic Absorption Spectrophotometry

ICPE Inductively Coupled Plasma Spectrophotometry

### **Miscellaneous**

N/A Not assayed N/D Not detected

#### **GENERAL DISCLAIMER:**

The results reported above are based on well-known, accepted analytical procedures used solely on the sample submitted by the customer. No warranty as to the reproducibility or extractability of the material other than the sample is given. AuRIC Metallurgical Laboratories, LLC makes no representation express or implied on the material other than that represented by the assayed sample.

| Ahmet B. Altinay<br>Metallurgical Engineer |
|--------------------------------------------|
|                                            |



Date: December 27, 2017

Ph: (801) 974 7677 Fax: (801) 974 9656

e-mail: Lab@AuRICLabs.com

### **ANALYSIS REPORT:**

To: Pershing Resources Company c/o Mr. Joel Adams, 200 South Virginia Street 8th Floor, Reno. Nevada 89501

| Sample<br>No: | Customer<br>Sample ID No:    | Method<br>Code1<br>Code2 | Gold<br>(Tr oz/ston) | Recovery<br>(%) | Silver<br>(Tr oz/ston) | Recovery<br>(%) |
|---------------|------------------------------|--------------------------|----------------------|-----------------|------------------------|-----------------|
| 12912         | New Enterprise Ground Sc.    | FAL/ICPE                 | 0.072                |                 | 4.560                  |                 |
|               |                              |                          |                      |                 |                        |                 |
| 4644          | Sodium Cyanide leach         |                          |                      |                 |                        |                 |
|               | amenability test (5g/L NaCN, |                          |                      |                 |                        |                 |
|               | pH: 12, 30g/100mL)           | 4 hrs.                   | 0.066                | 91.7%           | 4.055                  | 88.9%           |
|               |                              |                          |                      |                 |                        |                 |
| 4646          | Ammonium thiosulfate         |                          |                      |                 |                        |                 |
|               | Amenability test (0.1M,      |                          |                      |                 |                        |                 |
|               | pH:11, 30g/100mL)            | 8 hrs.                   | 0.067                | 93.1%           | 4.086                  | 89.6%           |
|               |                              |                          |                      |                 |                        |                 |

### **Analysis method:**

| Code 1 | D 1 C D                     | ion / Preparation of Solid Samples |
|--------|-----------------------------|------------------------------------|
| LANAL  | Procedure for Hecomposit    | ian / Prangratian at Salia Samnias |
| Couci  | i i occuui c ioi Decombosii | ion / i i charadon oi bonu bambics |

ADn Acid Decomposition (n: the number of acids used)

FAL Fire Assay with Lead button Collection FAN Fire Assay with Nickel Sulfide Collection FAT Fire Assay with Tin Button Collection

### **Code 2 Procedure for Measurement**

VOL Volumetry or Titrimetry

GRV Gravimetry

FAA Flame Atomic Absorption Spectrophotometry

GAA Graphite Furnace Atomic Absorption Spectrophotometry

ICPE Inductively Coupled Plasma Spectrophotometry

### **Miscellaneous**

N/A Not assayed N/D Not detected

#### **GENERAL DISCLAIMER:**

The results reported above are based on well-known, accepted analytical procedures used solely on the sample submitted by the customer. No warranty as to the reproducibility or extractability of the material other than the sample is given. AuRIC Metallurgical Laboratories, LLC makes no representation express or implied on the material other than that represented by the assayed sample.

| Ahmet B. Altinay<br>Metallurgical Engineer |  |  |
|--------------------------------------------|--|--|
|                                            |  |  |